220 research outputs found

    Blood Glucose Forecasting using LSTM Variants under the Context of Open Source Artificial Pancreas System

    Get PDF
    High accuracy of blood glucose prediction over the long term is essential for preventative diabetes management. The emerging closed-loop insulin delivery system such as the artificial pancreas system (APS) provides opportunities for improved glycaemic control for patients with type 1 diabetes. Existing blood glucose studies are proven effective only within 30 minutes but the accuracy deteriorates drastically when the prediction horizon increases to 45 minutes and 60 minutes. Deep learning, especially for long short term memory (LSTM) and its variants have recently been applied in various areas to achieve state-of-the-art results in tasks with complex time series data. In this study, we present deep LSTM based models that are capable of forecasting long term blood glucose levels with improved prediction and clinical accuracy. We evaluate our approach using 20 cases(878,000 glucose values) from Open Source Artificial Pancreas System (OpenAPS). On 30-minutes and 45-minutes prediction, our Stacked-LSTM achieved the best performance with Root-Mean-Square-Error (RMSE) marks 11.96 & 15.81 and Clark-Grid-ZoneA marks 0.887 & 0.784. In terms of 60-minutes prediction, our ConvLSTM has the best performance with RMSE = 19.6 and Clark-Grid-ZoneA=0.714. Our models outperform existing methods in both prediction and clinical accuracy. This research can hopefully support patients with type 1 diabetes to better manage their behavior in a more preventative way and can be used in future real APS context

    Environmental geological features of the red clay surrounding rock deformation under the influence of rock-fracture water

    Get PDF
    The development degree of fissure water in underground rock is a great trouble to the construction of railway tunnel, which will cause a series of environmental geological problems. Take the surrounding rock-section of the typical red clay in Lvliang-Mt. railway tunnel below the underground water level as an example, several aspects about the red clay surrounding rock will be researched, including pore water pressure, volume moisture content, stress of surrounding rock, vault subsidence and horizontal convergence through the field monitoring. Taking into account the importance of railway tunnel engineering, the large shear test of red clay was carried out at the construction site specially and the reliable situ shear strength parameters of surrounding rock will be obtained. These investigations and field tests helped to do a series of work: Three dimensional finite element numerical model of railway tunnel will be established, the deformation law of the red clay surrounding rock will be investigated, respectively, for the water-stress coupling effect and without considering it, the variation of the pore water pressure during excavation, the influence degree about the displacement field and stress field of water-stress coupling on red clay-rock will be discussed and the mechanism of the surrounding rock deformation will be submitted. Finally, the paper puts forward the feasible drainage scheme of the surrounding rock and the tunnel cathode. The geological environment safety of tunnel construction is effectively protected

    Wireless Power Transfer for Miniature Implantable Biomedical Devices

    Get PDF
    Miniature implantable electronic devices play increasing roles in modern medicine. In order to implement these devices successfully, the wireless power transfer (WPT) technology is often utilized because it provides an alternative to the battery as the energy source; reduces the size of implant substantially; allows the implant to be placed in a restricted space within the body; reduces both medical cost and chances of complications; and eliminates repeated surgeries for battery replacements. In this work, we present our recent studies on WPT for miniature implants. First, a new implantable coil with a double helix winding is developed which adapts to tubularly shaped organs within the human body, such as blood vessels and nerves. This coil can be made in the planar form and then wrapped around the tubular organ, greatly simplifying the surgical procedure for device implantation. Second, in order to support a variety of experiments (e.g., drug evaluation) using a rodent animal model, we present a special WPT transceiver system with a relatively large power transmitter and a miniature implantable power receiver. We present a multi-coil design that allows steady power transfer from the floor of an animal cage to the bodies of a group of free-moving laboratory rodents

    Effect of growth temperature on the morphology and phonon properties of InAs nanowires on Si substrates

    Get PDF
    Catalyst-free, vertical array of InAs nanowires (NWs) are grown on Si (111) substrate using MOCVD technique. The as-grown InAs NWs show a zinc-blende crystal structure along a < 111 > direction. It is found that both the density and length of InAs NWs decrease with increasing growth temperatures, while the diameter increases with increasing growth temperature, suggesting that the catalyst-free growth of InAs NWs is governed by the nucleation kinetics. The longitudinal optical and transverse optical (TO) mode of InAs NWs present a phonon frequency slightly lower than those of InAs bulk materials, which are speculated to be caused by the defects in the NWs. A surface optical mode is also observed for the InAs NWs, which shifts to lower wave-numbers when the diameter of NWs is decreased, in agreement with the theory prediction. The carrier concentration is extracted to be 2.25 × 1017 cm-3 from the Raman line shape analysis. A splitting of TO modes is also observed

    The use of multiple datasets to identify autophagy-related molecular mechanisms in intracerebral hemorrhage

    Get PDF
    Background: Intracerebral hemorrhage (ICH) is a stroke syndrome with high mortality and disability rates, but autophagy’s mechanism in ICH is still unclear. We identified key autophagy genes in ICH by bioinformatics methods and explored their mechanisms.Methods: We downloaded ICH patient chip data from the Gene Expression Omnibus (GEO) database. Based on the GENE database, differentially expressed genes (DEGs) for autophagy were identified. We identified key genes through protein–protein interaction (PPI) network analysis and analyzed their associated pathways in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene-motif rankings, miRWalk and ENCORI databases were used to analyze the key gene transcription factor (TF) regulatory network and ceRNA network. Finally, relevant target pathways were obtained by gene set enrichment analysis (GSEA).Results: Eleven autophagy-related DEGs in ICH were obtained, and IL-1B, STAT3, NLRP3 and NOD2 were identified as key genes with clinical predictive value by PPI and receiver operating characteristic (ROC) curve analysis. The candidate gene expression level was significantly correlated with the immune infiltration level, and most of the key genes were positively correlated with the immune cell infiltration level. The key genes are mainly related to cytokine and receptor interactions, immune responses and other pathways. The ceRNA network predicted 8,654 interaction pairs (24 miRNAs and 2,952 lncRNAs).Conclusion: We used multiple bioinformatics datasets to identify IL-1B, STAT3, NLRP3 and NOD2 as key genes that contribute to the development of ICH

    Surface Modification And Functionalization By Electrical Discharge Coating: A Comprehensive Review

    Get PDF
    Hard coatings are extensively required in industry for protecting mechanical/structural parts that withstand extremely high temperature, stress, chemical corrosion, and other hostile environments. Electrical discharge coating (EDC) is an emerging surface modification technology to produce such hard coatings by using electrical discharges to coat a layer of material on workpiece surface to modify and enhance the surface characteristics or create new surface functions. This paper presents a comprehensive overview of EDC technologies for various materials, and summarises the types and key parameters of EDC processes as well as the characteristics of resulting coatings. It provides a systematic summary of the fundamentals and key features of the EDC processes, as well as its applications and future trend

    Defect Analysis in Microgroove Machining of Nickel-Phosphide Plating by Small Cross-Angle Microgrooving

    Get PDF
    Crystalline nickel-phosphide (c-Ni-P) plating is a newly developed mold material for precision glass molding (PGM) to fabricate microgrooves. In the ultraprecision cutting process of the c-Ni-P plating material, the neighboring microgrooves are required to adjoin with each other to ensure acute microgroove ridges and miniaturize the microgroove size. Generally, defects of burrs and fracture pits can easily occur on the ridges when the plating layer is grooved. Burrs appear when tears dominate in material removal with a large adjacent amount. With the change of the adjacent amount, the removed material is sheared out from the workpiece, and when the cutting depth of the groove ridge is over the brittle-ductile transition thickness, fracture pits arise. To restrict these defects, a small cross-angle microgrooving method is proposed to test the critical adjacent amount range efficiently. It is found that an acute ridge of the microgroove is formed with a small enough adjacent amount; when this amount is in the range of 570 nm~720 nm in the microgroove machining process, fracture pits begin to arise on the gradient edge. High-quality microgrooves can be obtained based on this methodology

    Design of the Firstâ inâ Class, Highly Potent Irreversible Inhibitor Targeting the Meninâ MLL Proteinâ Protein Interaction

    Full text link
    The structureâ based design of Mâ 525 as the firstâ inâ class, highly potent, irreversible smallâ molecule inhibitor of the meninâ MLL interaction is presented. Mâ 525 targets cellular menin protein at subâ nanomolar concentrations and achieves low nanomolar potencies in cell growth inhibition and in the suppression of MLLâ regulated gene expression in MLL leukemia cells. Mâ 525 demonstrates high cellular specificity over nonâ MLL leukemia cells and is more than 30 times more potent than its corresponding reversible inhibitors. Mass spectrometric analysis and coâ crystal structure of Mâ 525 in complex with menin firmly establish its mode of action. A single administration of Mâ 525 effectively suppresses MLLâ regulated gene expression in tumor tissue. An efficient procedure was developed to synthesize Mâ 525. This study demonstrates that irreversible inhibition of menin may be a promising therapeutic strategy for MLL leukemia.Irreversible inhibitor Mâ 525 targets the meninâ MLL interaction. It is demonstrated that irreversible inhibition of menin is a promising therapeutic strategy for the treatment of MLL leukemia and may have advantages over reversible inhibitors.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141532/1/anie201711828.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141532/2/anie201711828-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141532/3/anie201711828_am.pd
    • …
    corecore