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Background: Intracerebral hemorrhage (ICH) is a stroke syndrome with high
mortality and disability rates, but autophagy’s mechanism in ICH is still unclear.
We identified key autophagy genes in ICH by bioinformatics methods and
explored their mechanisms.

Methods: We downloaded ICH patient chip data from the Gene Expression
Omnibus (GEO) database. Based on the GENE database, differentially
expressed genes (DEGs) for autophagy were identified. We identified key genes
through protein–protein interaction (PPI) network analysis and analyzed their
associated pathways in GeneOntology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG). Gene-motif rankings, miRWalk and ENCORI databases
were used to analyze the key gene transcription factor (TF) regulatory network and
ceRNA network. Finally, relevant target pathways were obtained by gene set
enrichment analysis (GSEA).

Results: Eleven autophagy-related DEGs in ICH were obtained, and IL-1B, STAT3,
NLRP3 andNOD2were identified as key genes with clinical predictive value by PPI
and receiver operating characteristic (ROC) curve analysis. The candidate gene
expression level was significantly correlated with the immune infiltration level, and
most of the key genes were positively correlated with the immune cell infiltration
level. The key genes are mainly related to cytokine and receptor interactions,
immune responses and other pathways. The ceRNA network predicted
8,654 interaction pairs (24 miRNAs and 2,952 lncRNAs).

Conclusion: We used multiple bioinformatics datasets to identify IL-1B, STAT3,
NLRP3 and NOD2 as key genes that contribute to the development of ICH.

KEYWORDS

intracerebral hemorrhage, autophagy, immune infiltration, bioinformatics analysis,
ceRNA network

OPEN ACCESS

EDITED BY

Thayne Kowalski,
Federal University of Rio Grande do Sul,
Brazil

REVIEWED BY

Mi Zhang,
Huazhong University of Science and
Technology, China
Xiang Cao,
Nanjing Drum Tower Hospital, China

*CORRESPONDENCE

Ju Gao,
gaoju_003@163.com

Tianfeng Huang,
18051063400@yzu.edu.cn

SPECIALTY SECTION

This article was submitted to
Neurogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 31 August 2022
ACCEPTED 23 March 2023
PUBLISHED 03 April 2023

CITATION

Xiao Y, Zhang Y, Wang C, Ge Y, Gao J and
Huang T (2023), The use of multiple
datasets to identify autophagy-related
molecular mechanisms in
intracerebral hemorrhage.
Front. Genet. 14:1032639.
doi: 10.3389/fgene.2023.1032639

COPYRIGHT

© 2023 Xiao, Zhang, Wang, Ge, Gao and
Huang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 03 April 2023
DOI 10.3389/fgene.2023.1032639

https://www.frontiersin.org/articles/10.3389/fgene.2023.1032639/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1032639/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1032639/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1032639/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1032639&domain=pdf&date_stamp=2023-04-03
mailto:gaoju_003@163.com
mailto:gaoju_003@163.com
mailto:18051063400@yzu.edu.cn
mailto:18051063400@yzu.edu.cn
https://doi.org/10.3389/fgene.2023.1032639
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1032639


1 Introduction

Intracerebral hemorrhage (ICH) is a common stroke
syndrome, accounting for approximately 15% of strokes, and
nearly 50% of stroke-related deaths worldwide are related to
ICH (Feigin et al., 2009; Biffi et al., 2016). ICH is caused by the
sudden rupture of blood vessels caused by pathological
accumulation of blood in the brain parenchyma (Jia et al.,
2020). ICH injury is divided into primary and secondary
injuries, with the former being caused by direct mechanical
action of the hematoma (Fu et al., 2022). Edema around the
hematoma occurs within hours of ICH, disrupting the
blood–brain barrier and adjacent tissues and leading to
secondary damage (Li et al., 2020). Second, mitochondrial
dysfunction, neurotransmitter disturbance, microglial activation,
and the release of inflammatory mediators are also important
mechanisms for aggravating brain injury (Kim-Han et al.,
2006). The death of nerve cells after ICH is closely related to
the sequelae of ICH and death from ICH. Programmed cell death
(PCD) refers to the autonomous and orderly death of cells
controlled by genes to maintain the stability of the internal
environment. PCD is an active suicidal behavior of cells
(Huysmans et al., 2018). PCD, including autophagy, apoptosis
and pyroptosis, plays an important role in neuronal cell death after
ICH (Bobinger et al., 2018). Autophagy, as an important category
of PCD, has been identified in ICH, but its mechanism in
intracerebral hemorrhage remains unclear.

Autophagy is one of the important subcellular events
occurring from eukaryotic cells to mammals, and the process
of autophagy is highly conserved. Autophagy refers to the process
in which cells can wrap their intracellular contents under stress
and integrate with lysosomes to degrade into these contents into
biomacromolecules, which are reused by cells (Ohsumi, 2014).
Recent studies have shown that autophagy is closely related to the
occurrence of various neurological diseases (Moujalled et al.,
2021). In recent years, autophagy has been found to be closely
related to secondary brain tissue damage after ICH (Duan et al.,
2016; Zhang et al., 2021). After ICH occurs, thrombin is produced
in the blood coagulation process, while the hematoma gradually
degrades, releasing degradation products such as hemoglobin,
heme and iron that invade the surrounding brain tissue. When
iron overload and abnormal thrombin expression occur in brain
tissue, autophagy is activated and involved in the brain protection
process to reduce injury, remove harmful substances and
maintain intracellular environmental homeostasis. The
protective role of autophagy in ICH has been demonstrated
(Wang et al., 2020; Li et al., 2021). However, the
overactivation of autophagy, which activates microglia to
produce proinflammatory factors and damages neurons, leads
to the aggravation of secondary injury after ICH (Shi et al., 2018;
Zhang et al., 2021). In summary, autophagy is extremely
important for the progression of ICH, but the key genes
involved in this process are still not clearly known. The
diagnosis of the severity of ICH on the basis of autophagy-
related gene expression is also a clinical blind spot. The key
autophagy-related genes in ICH need to be identified.

To explore and identify potential biomarkers and the key
autophagy-related genes in ICH, we obtained microarray and gene

information from multiple databases and used the R statistical
programming language for analysis. We selected DEGs in
perihematomal tissue (PH) and contralateral normal tissue from
intracerebral hemorrhage patients obtained from multiple sources as
raw data. Then, four key genes were screened by analyzing the
interactions and relationships of DEGs highly related to autophagy
with the ROC curve method. Finally, we analyzed the impact of key
genes on the immunemicroenvironment and themechanisms by which
these genes are regulated by transcription factors and non-coding RNAs.
We innovatively used methods such as ceRNA network construction,
motif-TF annotation and xCell to analyze autophagy after ICH. These
results will contribute to the study of themechanism of secondary injury
following ICH and provide new ideas for the diagnosis and treatment of
ICH in the clinic.

2 Materials and methods

2.1 Data download

The NCBI GEO Database (http://www.ncbi.nlm.nih.gov/geo/)
is a repository of microarray, next-generation sequencing, and
other high-throughput sequencing data (Edgar et al., 2002). The
GSE24265 Series Matrix File was downloaded from the GEO public
database, noted by the GPL570 annotation file, of which the
expression profile data belonged to 11 samples, including the
perihematomal areas, gray matters, and white matters of
7 patients in the healthy control group and 4 patients with ICH
(Rosell et al., 2011). The GSE149317 Series Matrix File (only used
to verify the expression level of key genes) was downloaded from
the GEO public database, and the annotated File is GPL24688
(Yuan et al., 2020). The microarray data included 6 cases in the
healthy control group and 6 patients in the ICH group.We used the
R package limma to count the differentially expressed genes
between ICH patient and healthy control samples (Ritchie et al.,
2015). The screening conditions for differential genes were P.
Value < 0.05 and |logFC| > 1. Using the GeneCards database
(https://www.genecards.org/) (Stelzer et al., 2016),
7236 autophagy-related genes were obtained. The relevance
scores of 269 genes were greater than 3, and these genes were
chosen for analysis as an autophagy gene set. Another 1139 ICH-
related genes were also obtained from the database. The flow chart
of this study is shown in Figure 1.

2.2 Functional annotation

The R package clusterProfiler was used to comprehensively
explore the functional correlation of these differentially expressed
genes (Yu et al., 2012). GO and KEGGwere used for the evaluation of
relevant functional categories. GO andKEGG enriched pathways with
both p values and q-values less than 0.05 were considered significant
pathways. To comprehensively explore the functional correlation of
differentially expressed genes, we also used the Metascape database
(www.metascape.org) for gene annotation (Zhou et al., 2019). GO and
KEGG were used to analyze the potential pathways of the selected
genes. Min overlap ≥ 3 and p ≤ 0.01 were considered statistically
significant.
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2.3 Protein–protein interaction network
analysis

The protein–protein interaction (PPI) information of genes was
retrieved through the STRING database (Szklarczyk et al., 2021),
and the confidence scores were set to ≥0.4. Cytoscape software was
used to visualize the results, and the gene coexpression network was
obtained. The MCODE algorithm of Cytoscape identified densely
connected sets of genes in the PPI network.

2.4 Analysis of immune cell infiltration

Developed by the Dviraran team in 2017, xCell is a widely used
method to evaluate immune cell types in the microenvironment
(Aran et al., 2017). This method integrates the strengths of gene
enrichment analysis via deconvolution to assess 64 cell types that
include multiple adaptive and innate immune cells, hematopoietic
progenitor cells, epithelial cells, and extracellular stromal cells,
including 48 tumor microenvironment-related cells. With the R
package xCell, we analyzed the patient data to infer the relative
proportion of infiltrating immune cells and performed Pearson
correlation analysis on the level of immune cell infiltration.
Pearson correlation analysis was used to evaluate the immune
cell content and the expression level of some key genes.

2.5 Transcription factor regulatory network
analysis of key genes

The transcription initiation process of eukaryotes is very
complex and often requires the assistance of various protein
factors. TFs and RNA polymerase II form a transcription

initiation complex and participate in the process of
transcription initiation together. TFs can be divided into two
categories according to their function. The first category is
universal transcription factors, which, when acting together
with RNA polymerase II to form the transcription initiation
complex, can start transcription at the correct position. Another
category is cis-acting elements, which are sequences present in
sequences flanking genes that can affect gene expression. Cis-
acting elements include promoters, enhancers, regulatory
sequences, and inducible elements that participate in the
regulation of gene expression. The cis-acting element itself
does not encode any protein but provides an action site to
interact with the trans-acting factor. This analysis was mainly
performed using the R package cisTarget (https://resources.
aertslab.org/cistarget/), in which we used mm9-500bp-
upstream-7species.mc9nr.feather version 1.6.0 for the Gene-
motif rankings database. The main TFs were predicted by the
cisTarget function, when nesThreshold was 3, geneErnMethod
was aprox, and geneErnMmaxRank was 5000.

2.6 Gene set enrichment analysis

According to a predefined set of genes, GSEA is a statistical
procedure to rank genes according to their degree of differential
expression in two types of samples and then test whether the
predefined gene set is enriched at the top or bottom of the
ranking list (Subramanian et al., 2005). In this study, GSEA was
used to compare the discrepancies in signaling pathways between the
high expression group and the low expression group and to explore
the molecular mechanisms of the core genes of patients. The
number of substitutions was 1000, and the substitution type was
phenotype.

FIGURE 1
Flow chart.
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2.7 Analysis of the ceRNA network

Representing a new mode of gene expression regulation, ceRNA
has attracted much attention in the academic community in recent
years. Compared with the miRNA regulatory network, the ceRNA
network is more elaborate and complex, involving more RNA
molecules, including mRNAs, gene-coding pseudogenes, long non-
coding RNAs, and miRNAs. In addition, we combined four databases,
miRWalk, miRDB, TargetScan and ENCORI, to predict the interaction
between key mRNAs and non-coding RNAs. Moreover, we selected
coidentified targeted mRNAs for further analysis. Finally, ceRNA
networks were established with the combination of
mRNA–miRNA and miRNA–lncRNA interactions and visualized
with Cytoscape.

3 Results

3.1 Identification of Hub genes

We downloaded the GSE24265 dataset from the NCBI GEO
public database, which contained the data from a total of
11 individuals, including 7 in the healthy control group and 4 in
the disease group. Through comparison with the healthy control
group, we used the limma package to screen out a total of
341 upregulated genes and 144 downregulated genes in the
patient samples (Figure 2A). Among them, 11 autophagy-related
genes (all upregulated genes) were included (Figure 2B). Ultimately,
we used these 11 autophagy-related differentially expressed genes as
candidate gene sets for further analysis.

FIGURE 2
(A) The volcano plot of differentially expressed genes in the GSE24265 dataset. Red indicates the downregulation of differentially expressed genes,
green indicates the upregulation of differentially expressed genes, and the screening conditions for differentially expressed genes were P.Value <
0.05 and |logFC| > 1. (B) Venn diagram of differentially expressed genes and autophagy-related genes. (C) GO enrichment results of differentially
expressed genes, including BP, CC, and MF, sorted according to the number of genes enriched in the pathway. (D) KEGG enrichment results of
differentially expressed genes sorted according to the number of genes enriched in the pathway. (E) GO-KEGG enrichment analysis of differential genes
based on the Metascape database are shown above. The cluster networks composed of enriched pathways are shown below, where nodes sharing the
same cluster are usually close to each other.
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3.2 Functional enrichment analysis

We further performed pathway analysis on these 11 candidate
genes. GO enrichment analysis showed that these candidate
genes were mainly enriched in the positive regulation of
cytokine production and cytokine receptor binding pathways
(Figure 2C). KEGG enrichment analysis revealed that these
candidate genes were mainly enriched in pathways such as
lipid and atherosclerosis and the nucleotide-binding
oligomerization domain (NOD)−like receptor signaling
pathway (Figure 2D). The Metascape database was used for
further pathway analysis of candidate genes. The results
showed that these candidate genes were mainly enriched in
positive regulation of interleukin-1 beta production, the
regulation of interleukin-17 production and the regulation of
autophagy pathways (Figure 2E).

3.3 Identification of key genes and ROC
curve analysis

We foundmultiple protein interaction pairs among 11 candidate
genes through the STRING online database. Moreover, five key
genes, including IL1B, STAT3, IL6, NOD2 and NLRP3, were
obtained by MCODE analysis in Cytoscape (Figure 3A). Then,
we analyzed the expression levels of these five key genes in the
GSE149317 dataset and found that the expression levels of
interleukin-1beta (IL1B), signal transducer and activator of
transcription 3 (STAT3), nucleotide-binding oligomerization
domain containing 2 (NOD2) and NOD-1-like receptor pyrin
domain containing three (NLRP3) were significantly higher in the
ICH group than in the healthy control group (Figure 3B). The area
under the receiver operating characteristic curve (AUC) for the four
key genes was no less than 0.75 (Supplementary Figure S1). Based on

FIGURE 3
(A) Based on the Cytoscape software, the key clusters obtained by the protein interaction network MCODE algorithm, the orange genes are the key
genes in the cluster. (B) The GSE149317 dataset validates the 5-based expression, with blue for the control group and yellow for the ICH group. The test
method was ANOVA. (C) Relative percentages of 20 immune cell subsets per sample. On the horizontal axis, green is the healthy control group, and
purple is the patient group. (D) Pearson correlation between 20 immune cells; purple indicates a negative correlation, and red indicates a positive
correlation. The p value of the level of correlation is indicated by an asterisk: * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. (E) Pearson correlation
analysis of 11 candidate genes and 20 types of immune cells; purple indicates a negative correlation, and red indicates a positive correlation. (F) The
difference in immune cell content between healthy controls and ICH patients (yellow indicates healthy controls, and blue indicates ICH patients); p <
0.05 was considered statistically significant.
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the GSE24265 dataset, we once again analyzed the predictive power
of these key genes for ICH. The results showed that the AUCs of
IL1B, STAT3, NOD2 and NLRP3 were greater than 0.8
(Supplementary Figure S1).

3.4 Analyses of the immune
microenvironment

The immune microenvironment is mainly composed of
immune-related fibroblasts, immune cells, extracellular
matrix, various growth factors, inflammatory factors and
special physicochemical characteristics. The immune
microenvironment significantly affects the diagnosis, survival
outcome and clinical severity of disease. Analyzing the
relationship between core genes and immune infiltration in
the GSE24265 dataset, we further explored the potential
molecular mechanisms affecting disease progression. The
20 most significant immune factors in the Wilcoxon test were
selected for analysis. The research results showing the
proportion of immune cells and the correlation with
immunity are shown in Figures 3C, D. There were multiple
significant correlation pairs between the expression level of
candidate genes and the level of immune infiltration
(Figure 3E). In addition, the levels of endothelial cells and Ly
endothelial cells in the ICH group were higher than those in the
healthy controls (Figure 3F). We further explored the
relationship between key genes and immune cells and found

that key genes were mostly positively correlated with immune
cell infiltration levels. For example, Endothelial cells,
MicroenvironmentScore, aDC, ly Endothelial cells and
ImmuneScore were significantly positively correlated with
4 key genes, but CD8+ Tcm, iDC and pro B−cells were
significantly negatively correlated with key genes
(Supplementary Figure S2). We further obtained the
correlations between these key genes and different immune
factors from the TISIDB database, including
immunomodulators, chemokines and cell receptors
(Supplementary Figure S3). These data confirmed that these
key genes are closely related to immune cell infiltration levels
and play important roles in the immune microenvironment.

3.5 The correlation between key genes and
ICH-related genes

We obtained 1,139 ICH-related pathogenic genes through
the GeneCards database. Based on the GSE24265 dataset, we
analyzed the expression levels of the 4 key genes and the top
20 genes in the Relevance score from GeneCards. Statistical
analysis by ANOVA showed that the expression levels of these
disease-related genes were significantly different between the
healthy control group and the disease-related group. In
addition, the expression levels of key genes were significantly
correlated with the expression levels of multiple disease-related
genes (Supplementary Figure S4).

FIGURE 4
(A) Distribution of AUC values for enriched motifs, which were calculated from the recovery curves of key genes for motif ordering. (B–E) In the
figure, the red line is the mean value of the recovery curve of each motif, the green line is the mean + standard deviation, and the blue line is the recovery
curve of the current motif.
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3.6 Transcription factors of key genes

We applied these four key genes to the gene set for this analysis
and found that they are regulated by a common mechanism
including multiple transcription factors. Therefore, enrichment
analysis (Figure 4), motif-TF annotation and the selection of
important genes were performed for these transcription factors
using accumulative recovery curves. The analysis results showed
that the motif with the highest normalized enrichment score (NES:
7.70) was annotated as cisbp__M5082. Three genes were enriched in
this motif, namely, IL1B, NLRP3 and NOD2. We displayed all
enriched motifs and corresponding transcription factors of core
genes (Supplementary File S1)

3.7 GSEA of key genes

We investigated the specific signaling pathways enriched by the
4 key genes and explored the underlying molecular mechanisms by
which the core genes affect the progression of ICH. Some of these
highly significant pathways were selected to be displayed in detail
(Figure 5). The IL1B gene GO enrichment pathways were
ERYTHROCYTE DEVELOPMENT, INTRACILIARY
TRANSPORT INVOLVED IN CILIUM ASSEMBLY, etc. The
IL1B gene KEGG enrichment pathways were CYTOKINE-
CYTOKINE RECEPTOR INTERACTION, JAK STAT
SIGNALING PATHWAY, etc. The NLRP3 gene GO enrichment
pathways were COTRANSLATIONAL PROTEIN TARGETING
TO MEMBRANE, 2 OXOGLUTARATE METABOLIC
PROCESS, etc. The NLRP3 gene KEGG enrichment pathways
were CALCIUM SIGNALING PATHWAY, PENTOSE AND
GLUCURONATE INTERCONVERSIONS. The NOD2 gene GO
enrichment pathways were CELLULAR METABOLIC
COMPOUND SALVAGE, HISTONE H4 K16 ACETYLATION,
etc. The NOD2 gene KEGG enrichment pathways were

ANTIGEN PROCESSING AND PRESENTATION,
AUTOIMMUNE THYROID DISEASE, etc. The STAT3 gene GO
enrichment pathways were HEPATOCYTE DIFFERENTIATION,
MRNA TRANSCRIPTION, etc. The STAT3 gene KEGG
enrichment pathways were CALCIUM SIGNALING PATHWAY,
PENTOSE AND GLUCURONATE INTERCONVERSIONS, etc.

3.8 Further ceRNA interaction and mining

The possible miRNAs and lncRNAs of the 4 key genes were
obtained from the miRWalk database and ENCORI database,
respectively. First, the four key mRNA-related mRNA–miRNA
relationship pairs were extracted from the miRWalk database,
but we retained only 67 mRNA–miRNA pairs (4 mRNAs and
66 miRNAs) that were validated in TargetScan or miRDB. Then,
interacting lncRNAs were predicted based on these miRNAs, and a
total of 8,654 pairs of interactions (24 miRNAs and 2,952 lncRNAs)
were predicted. Finally, a ceRNA network was constructed by
Cytoscape (V3.7) (Figure 6).

4 Discussion

Defined as a primary, non-traumatic intraparenchymal
hemorrhage, ICH can lead to severe disability and is associated
with a high fatality rate of 30%–50% within 6 months (Mayer and
Rincon, 2005). The mortality rate of ICH within 30 days is 32%–
50%, and only 28%–35% of patients who survive 3 months are able
to live independently (Martini et al., 2012). As a subtype of stroke,
the pathogenesis and treatment of ICH have been extensively
studied, and there is still a lack of effective acute treatment.
Autophagy, as an important regulatory mechanism of
intracellular homeostasis, has been gradually recognized in ICH,
but the regulatory effects of autophagy on intracellular homeostasis

FIGURE 5
Enrichment analysis of key genes. The first row is the GO analysis, and the second row is the KEGG analysis. From left to right are IL-1B, STAT3,NLRP3
and NOD2.
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and the immune microenvironment after ICH remain to be further
explored.

Inflammation in secondary injury after ICH is mainly due to the
activation of and increase in inflammatory cells and inflammatory
factors (Wang, 2010). After ICH, components in the blood,
including blood cells, cytokines and various immune cells,
quickly cross the blood–brain barrier and enter and accumulate
at the center of the injured site. This is followed by the activation of
infiltrated immune cells and immune cells of the central nervous
system, including the polarization of macrophages and microglia,
the activation of leukocytes and astrocytes, and brain tissue damage
and repair (Xue and Del Bigio, 2000; Sheth and Rosand, 2014).
Immune cells include peripheral blood-derived leukocytes and
macrophages, innate microglia, astrocytes, and mast cells. Many
studies have shown that leukocytes, macrophages, activated
microglia, and astrocytes are the main cellular mediators of
secondary injury in ICH (Illanes et al., 2011). These immune
cells can release cytokines, chemokines, prostaglandins, proteases,
ferrous iron, and other immunologically active molecules (Hua et al.,
2006). The R package X cell analysis indicated that four key genes
can cause macrophages, neutrophils and CD8+ T cells to infiltrate
the lesions during ICH and can also promote the increase in related
immune factors and aggravate the inflammatory response.

Although the pathogenesis of ICH has been extensively studied at the
transcriptional level, there are some limitations of these studies.Most of the

related research at the RNA level is on only the regulatory relationship
between a single type of RNA, such as lncRNAs,miRNAs ormRNAs, and
ICH, but little is known about the interaction of different RNAs in the
development of ICH. The discovery of ceRNAs in recent years has solved
this problem. ceRNArefers toRNAthat has amiRNAbinding site and can
compete with mRNA to bind miRNA, thereby inhibiting the regulatory
effect of miRNA on target genes (Ma et al., 2020). The ceRNA regulatory
network rigorously integrates the mutual regulatory relationship between
mRNA and non-coding RNA (ncRNA), providing significant help for the
study of posttranscriptional mechanisms of diseases (Qi et al., 2015).
Numerous studies have shown that the ceRNA regulatory network plays
an important role in secondary injury following ICH (Liu et al., 2021;
Wang et al., 2021; Yang et al., 2022). Based on multiple databases, the key
gene-related ceRNA network described in this study shows miRNAs and
related lncRNAs that play major regulatory roles.

This study identified IL-1B, STAT3, NOD2 and NLRP3 as key
causative genes for secondary injury in ICH and demonstrated the
critical role of autophagy in ICH.We combined two datasets, mainly
using GO/KEGG analysis, immune infiltration analysis and ceRNA
network construction, to screen key autophagy-related genes and
analyze their mechanisms affecting ICH progression.

Recent studies have shown that cytokines, including
proinflammatory cytokines and anti-inflammatory cytokines, play
an important regulatory role in the course of various inflammatory-
related diseases. IL-1B, a member of the interleukin 1 cytokine

FIGURE 6
CeRNA network of key genes. Purple represents key genes, green represents miRNA, and orange represents lncRNA.
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family, is a key proinflammatory factor that plays an important role
in the body’s immune response and regulates inflammatory
responses to brain injury (You et al., 2020). After inflammation
occurs in the body, the secretion of IL-1B increases rapidly. In
general, IL-1B has a proinflammatory effect in the local
inflammatory response, causing vascular dilation and inducing
the transfer of monocytes and neutrophils to the inflammatory
site, resulting in a stress response and tissue damage (Schett et al.,
2016). Our GSEA suggested that IL-1Bwas involved in the process of
cytokine binding to its corresponding receptor, which also suggested
that IL-1B plays an important role in the inflammatory response to
ICH. In addition, KEGG analysis of IL-1B also showed enrichment
of the Janus kinase-signal transducer and activator of transcription
(JAK-STAT) pathway. Previously, researchers found that miRNAs/
mRNAs changes in whole-blood samples for patients with ICH were
important links with the JAK-STAT pathway (Cheng et al., 2020).
The JAK-STAT pathway has also been associated with ICH
progression in rat models (Ji et al., 2020). Our GSEA results also
showed that STAT3, which is closely related to mRNA catabolism, is
a key gene leading to ICH. The STAT protein family, which includes
seven members, plays a key role in regulating cytokine-dependent
inflammation and immunity. STAT3 is considered to be the most
conserved and can be activated by various factors and stimuli, such
as cytokines and chemokines. STAT3 is closely related to ischemic
stroke and ischemia–reperfusion injury, and its high expression
aggravates nerve damage (Zhu et al., 2021). Zhu H reported that
STAT3 activation can promote the occurrence and development of
inflammation, leading to increased cerebral edema after ICH and
damage to neurons around the hematoma, and NLRP3 is a
downstream molecule of STAT (Lee et al., 2006). In addition, the
findings from mouse experiments suggest that NLRP3 is the key to
the aggravation of ICH injury caused by STAT3 (Ji et al., 2022). Our
results showed thatNLRP3was significantly upregulated in the brain
tissues of ICH patients, and the AUC of NLRP3 was greater than
0.89, which indicates that NLRP3 is a key gene for ICH and has
strong predictive value for ICH. NLRP3, a member of the
intracytoplasmic pattern recognition receptor NOD-like receptors
(NLRs), is an important part of the innate immune system and plays
an important regulatory role in the process of innate immune
inflammation. NLRP3 can sense tissue cell damage and is then
activated by a variety of damage-associated molecular patterns
(DAMPs) or pathogen-associated molecular patterns (PAMPs)
(Mangan et al., 2018). Activated NLRP3 protein can form the
NLRP3 inflammasome, which can cleave biologically inactive
pro-IL-1B into IL-1B and exert its proinflammatory effect
(Mangan et al., 2018). The last key gene identified in our
analysis, NOD2, is also one of the main NLRs. As an important
intracytoplasmic pattern recognition receptor, NOD2 is widely
involved in the recognition of immune cells and the induction of
inflammatory responses (Huang et al., 2013). Activated
NOD2 receptors recruit the downstream signaling molecule
receptor interacting protein 2 (RIP2), which can activate the
non-canonical transcription factor nuclear factor-kappaB (NF-κB)
and then transcribe NF-κB-dependent target genes, secreting
inflammatory factors such as tumor necrosis factor-A (TNF-A)
and IL-1B. Although many NOD2 studies have focused on
inflammatory bowel disease, it has been shown that NOD2 is
involved in the inflammatory response after cerebral ischemia,

triggering an excessive inflammatory response and exacerbating
brain injury (Kuban et al., 2017). This study is the first to
suggest that NOD2 may be a key gene in the development of
ICH. Our GSEA results suggest a high correlation of NOD2 with
ANTIGEN PROCESSING AND PRESENTATION.

5 Conclusion

In this study, the existing ICHpatient data in theGEOdatabase were
analyzed by combining autophagy-related genes in the GENE database,
and 11 potential pathogenic genes were finally obtained. Finally, with
diagnostic and predictive value, IL-1B, STAT3, NLRP3 and NOD2 were
obtained through PPI analysis and ROC curve analysis. Then, based on
the database and R package, we found that these 4 key genes cause
immune cell infiltration into ICH lesions. GSEA revealed the specific
signaling pathways involved in key genes, and we explored the possibility
that these pathways might influence the development of ICH. The
demonstration of TFs and ceRNA networks affecting key genes
provides a theoretical basis for TFs and ncRNA in the regulation of
the expression of these key genes. The identification of four key genes
contributes to the understanding of the mechanism of ICH and provides
potential targets and directions for the clinical treatment of ICH.
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SUPPLEMENTARY FIGURE S1
The ROC curves of key genes suggest that the genes have good predictive
performance for ICH. The first row is the GSE149317 dataset, and the second
row is the GSE24265 dataset.

SUPPLEMENTARY FIGURE S2
(A-D) Pearson correlation between key genes and immune cells. IL-1B,
STAT3, NLRP3 and NOD2 are listed in alphabetical order. (E) Pearson

correlation analysis of 4 key genes and 20 kinds of immune cells; purple
indicates a negative correlation, and red indicates a positive correlation.

SUPPLEMENTARY FIGURE S3
(A-D) Pearson correlations of key genes and various immune factors;
purple indicates a negative correlation, and red indicates a positive
correlation. Chemokine-related genes, receptor-related genes,
immunoinhibitor-related genes, MHC-related genes and
immunostimulator-related genes are listed in alphabetical order. The p
value of the level of correlation is indicated by an asterisk: * for p < 0.05,
** for p < 0.01, and *** for p < 0.001.

SUPPLEMENTARY FIGURE S4
(A) Differences in the expression of ICH disease-regulating genes; blue
indicates healthy controls, and yellow indicates ICH patients. (B) Themiddle
panel shows the Pearson correlation analysis of ICH disease-regulating
genes and key genes. Blue indicates a negative correlation, and red indicates
a positive correlation.

SUPPLEMENTARY FILE S1
All the enrichedmotifs and corresponding transcription factors of core genes
are displayed in the document.
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