673 research outputs found

    Distinguishing f(R) theories from general relativity by gravitational lensing effect

    Full text link
    The post-Newtonian formulation of a general class of f(R) theories is set up to 3rd order approximation. It turns out that the information of a specific form of f(R) gravity is encoded in the Yukawa potential, which is contained in the perturbative expansion of the metric components. Although the Yukawa potential is canceled in the 2nd order expression of the effective refraction index of light, detailed analysis shows that the difference of the lensing effect between the f(R) gravity and general relativity does appear at the 3rd order when f(0)/f(0)\sqrt{f''(0)/f'(0)} is larger than the distance d0d_0 to the gravitational source. However, the difference between these two kinds of theories will disappear in the axially symmetric spacetime region. Therefore only in very rare case the f(R) theories are distinguishable from general relativity by gravitational lensing effect at the 3rd order post-Newtonian approximation.Comment: 14 page

    A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines

    Get PDF
    Organic Rankine cycle (ORC) system is considered as a promising technology for energy recovery from the waste heat rejected by internal combustion (IC) engines. However, such waste heat is normally contained in both coolant and exhaust gases at quite different temperatures. A single ORC system is usually unable to efficiently recover energy from both of these waste heat sources. A dual loop ORC system which essentially has two cascaded ORCs to recover energy from the engine’s exhaust gases and coolant separately has been proposed to address this challenge. In this way, the overall efficiency of energy recovery can be substantially improved. This paper examines a regenerative dual loop ORC system using a pair of environmentally friendly refrigerants, R1233zd and R1234yf, as working fluids, to recover energy from the waste heat of a compressed natural gas (CNG) engine. Unlike most previous studies focusing on the ORC system only, the present research analyses the ORC system and CNG engine together as an integrated system. As such, the ORC system is analysed on the basis of real data of waste heat sources of the CNG engine under various operational conditions. A numerical model is employed to analyse the performances of the proposed dual loop cycle with four pairs of working fluids. The effects of a regenerative heat exchanger and several other key operating parameters are also analysed and discussed in detail. The performance of the integrated engine-ORC system is then analysed under actual engine operating conditions which were measured beforehand. The performance of the proposed system under off-design conditions has also been analysed. The obtained results show that the proposed dual loop ORC system could achieve better performance than other ORC systems for similar applications

    Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery

    Get PDF
    In this study, a dual loop ORC (organic Rankine cycle) system is adopted to recover exhaust energy, waste heat from the coolant system, and intercooler heat rejection of a six-cylinder CNG (compressed natural gas) engine. The thermodynamic, heat transfer, and optimization models for the dual loop ORC system are established. On the basis of the waste heat characteristics of the CNG engine over the whole operating range, a GA (genetic algorithm) is used to solve the Pareto solution for the thermodynamic and heat transfer performances to maximize net power output and minimize heat transfer area. Combined with optimization results, the optimal parameter regions of the dual loop ORC system are determined under various operating conditions. Then, the variation in the heat transfer area with the operating conditions of the CNG engine is analyzed. The results show that the optimal evaporation pressure and superheat degree of the HT (high temperature) cycle are mainly influenced by the operating conditions of the CNG engine. The optimal evaporation pressure and superheat degree of the HT cycle over the whole operating range are within 2.5–2.9 MPa and 0.43–12.35 K, respectively. The optimal condensation temperature of the HT cycle, evaporation and condensation temperatures of the LT (low temperature) cycle, and exhaust temperature at the outlet of evaporator 1 are kept nearly constant under various operating conditions of the CNG engine. The thermal efficiency of the dual loop ORC system is within the range of 8.79%–10.17%. The dual loop ORC system achieves the maximum net power output of 23.62 kW under the engine rated condition. In addition, the operating conditions of the CNG engine and the operating parameters of the dual loop ORC system significantly influence the heat transfer areas for each heat exchanger

    Throughput capacity of two-hop relay MANETs under finite buffers

    Full text link
    Since the seminal work of Grossglauser and Tse [1], the two-hop relay algorithm and its variants have been attractive for mobile ad hoc networks (MANETs) due to their simplicity and efficiency. However, most literature assumed an infinite buffer size for each node, which is obviously not applicable to a realistic MANET. In this paper, we focus on the exact throughput capacity study of two-hop relay MANETs under the practical finite relay buffer scenario. The arrival process and departure process of the relay queue are fully characterized, and an ergodic Markov chain-based framework is also provided. With this framework, we obtain the limiting distribution of the relay queue and derive the throughput capacity under any relay buffer size. Extensive simulation results are provided to validate our theoretical framework and explore the relationship among the throughput capacity, the relay buffer size and the number of nodes

    Thermodynamic analysis of a dual-loop organic Rankine cycle (ORC) for waste heat recovery of a petrol engine

    Get PDF
    Huge amounts of low-grade heat energy are discharged to the environment by vehicular engines. Considering the large number of vehicles in the world, such waste energy has a great impact on our environment globally. The Organic Rankine Cycle (ORC), which uses an organic fluid with a low boiling point as the working medium, is considered to be the most promising technology to recover energy from low-grade waste heat. In this study, a dual-loop ORC is presented to simultaneously recover energy from both the exhaust gases and the coolant of a petrol engine. A high-temperature (HT) ORC loop is used to recover heat from the exhaust gases, while a low-temperature (LT) ORC loop is used to recover heat from the coolant and the condensation heat of the HT loop. Figure 1 shows the schematic of the dual-loop ORC. Differing from previous research, two more environmentally friendly working fluids are used, and the corresponding optimisation is conducted. First, the system structure and operating principle are described. Then, a mathematical model of the designed dual-loop ORC is established. Next, the performance of the dual-loop cycle is analysed over the entire engine operating region. Furthermore, the states of each point along the cycle and the heat load of each component are compared with the results of previous research. The results show that the dual-loop ORC can effectively recover the waste heat from the petrol engine, and that the effective thermal efficiency can be improved by about 20 ~ 24%, 14~20%, and 30% in the high-speed, medium-speed, and low-speed operation regions, respectively. The designed dual-loop ORC can achieve a higher system efficiency than previous ORCs of this structure. Therefore, it is a good choice for waste heat recovery from vehicle engines

    Research on the Quality Management Mechanism of Chinese Government Procurement of Public Services

    Get PDF
    The government meets the growing surge of social supply and demand through the purchase of public services from social organizations. Since the introduction of concept to China in the 1990s, government procurement of services has become one of the main ideas of public service reform; government procurement plays an increasingly important role in constructing a service-oriented government and improving public services. In recent years, China attaches a growing importance to the government procurement of public services and starts to reform the way, process and scope of government procurement of public services, and constantly improves quality control mechanisms of government procurement of public services. Based on a wide literature review of texts on the purchase of public services at home and abroad, this paper combines with the actual needs of our citizens and studies the quality control mechanisms of government procurement of public services
    corecore