35,645 research outputs found

    Correlations of velocity and temperature fluctuations in the stagnation-point flow of circular cylinder in turbulent flow

    Get PDF
    Boundary layer flow and turbulence transport analyses to study the influence of the free-stream turbulence on the surface heat transfer rate and the skin friction around the stagnation point of a circular cylinder in a turbulent flow are presented. The analyses are formulated with the turbulent boundary layer equations, the Reynolds stress transport equations and the k - epsilon two-equation turbulence modeling. The analyses are used to calculate the time-averaged turbulence double correlations, the mean flow properties, the surface heat transfer rate and the skin friction with an isotropic turbulence in the freestream. The analytical results are described and compared with the existing experimental measurements. Depending on the free-stream turbulence properties, the turbulence kinetic energy can increase or decrease as the flow moves toward the surface. However, the turbulence kinetic energy induces large Reynolds normal stresses at the boundary layer edge. The Reynolds normal stresses change the boundary layer profiles of the time-averaged double correlations of the velocity and temperature fluctuations, the surface heat transfer rate and the skin friction. The free-stream turbulence dissipation rate can affect the stagnation-point heat transfer rate but the influence of the free-stream temperature fluctuation on the heat transfer rate is insignificant

    A simple model for detection of rare sound events

    Full text link
    We propose a simple recurrent model for detecting rare sound events, when the time boundaries of events are available for training. Our model optimizes the combination of an utterance-level loss, which classifies whether an event occurs in an utterance, and a frame-level loss, which classifies whether each frame corresponds to the event when it does occur. The two losses make use of a shared vectorial representation the event, and are connected by an attention mechanism. We demonstrate our model on Task 2 of the DCASE 2017 challenge, and achieve competitive performance.Comment: Accepted by Interspeech 201

    Numerical methods for systems of conservation laws of mixed type using flux splitting

    Get PDF
    The essentially non-oscillatory (ENO) finite difference scheme is applied to systems of conservation laws of mixed hyperbolic-elliptic type. A flux splitting, with the corresponding Jacobi matrices having real and positive/negative eigenvalues, is used. The hyperbolic ENO operator is applied separately. The scheme is numerically tested on the van der Waals equation in fluid dynamics. Convergence was observed with good resolution to weak solutions for various Riemann problems, which are then numerically checked to be admissible as the viscosity-capillarity limits. The interesting phenomena of the shrinking of elliptic regions if they are present in the initial conditions were also observed

    Numerical experiments on the accuracy of ENO and modified ENO schemes

    Get PDF
    Further numerical experiments are made assessing an accuracy degeneracy phenomena. A modified essentially non-oscillatory (ENO) scheme is proposed, which recovers the correct order of accuracy for all the test problems with smooth initial conditions and gives comparable results with the original ENO schemes for discontinuous problems

    Supersonic boundary-layer flow turbulence modeling

    Get PDF
    Baldwin-Lomax and kappa-epsilon turbulence models were modified for use in Navier-Stokes numerical computations of Mach 2.9 supersonic turbulent boundary layer flows along compression ramps. The computational results of Reynolds shear stress profiles were compared with experimental data. The Baldwin-Lomax model was modified to account for the Reynolds shear stress amplification within the flow field. A hybrid kappa-epsilon model with viscous sublayer turbulence treatment was constructed to predict the Reynolds shear stress profiles within the entire flow field. These modified turbulence models were effective for the computations of the surface pressure and the skin friction factor variations along an 8 deg ramp surface. The hybrid kappa-epsilon model could improve the predictions of the Reynolds shear stress profile and the skin friction factor near the corner of a 16 deg ramp
    corecore