105 research outputs found

    Thrombolysis in a stroke patient on dabigatran anticoagulation: case report and synopsis of published cases

    Get PDF
    We present the case of an aphasic 77-year-old stroke patient with left distal M1 occlusion who received rt-PA for thrombolysis while on oral anticoagulant treatment with dabigatran (150 mg b.i.d.). Coagulation parameters were normal (thrombin time 20 s, aPTT 20 s, INR 1.08) and the patient improved from an NIHSS of 15 to 5 within 24 h with sonographic evidence of M1 recanalization. She did not develop intracranial bleeding complications but showed unusually large diffuse skin ecchymoses. In our report, we give an overview of all reported cases of thrombolysis under dabigatran anticoagulation and discuss the questions of medication adherence under novel oral anticoagulants (NOA) and the safety of NOA in terms of secondary intracerebral hemorrhage after stroke

    Fingolimod for the treatment of neurological diseases—state of play and future perspectives

    Get PDF
    Sphingolipids are a fascinating class of signaling molecules derived from the membrane lipid sphingomyelin. They show abundant expression in the brain. Complex sphingolipids such as glycosphingolipids (gangliosides and cerebrosides) regulate vesicular transport and lysosomal degradation and their dysregulation can lead to storage diseases with a neurological phenotype. More recently, simple sphingolipids such ceramide, sphingosine and sphingosine 1-phosphate (S1P) were discovered to signal in response to many extracellular stimuli. Forming an intricate signaling network, the balance of these readily interchangeable mediators is decisive for cell fate under stressful conditions.The immunomodulator fingolimod is the prodrug of an S1P receptor agonist. Following receptor activation, the drug leads to downregulation of the S1P1 receptor with the consequence of functional antagonism. Being the first drug to modulate the sphingolipid signaling pathway, it was marketed in 2010 for the treatment of multiple sclerosis (MS). At that time, immunomodulation was widely accepted as the key mechanism of fingolimod's efficacy in MS.But given the excellent passage of this lipophilic compound into the brain and its massive brain accumulation as well as the abundant expression of S1P receptors on brain cells, it is conceivable that fingolimod also affects brain cells directly. Indeed, a seminal study showed that the protective effect of fingolimod in experimental autoimmune encephalitis (EAE), a murine MS model, is lost in mice lacking the S1P1 receptor on astrocytes, arguing for a specific role of astrocytic S1P signaling in multiple sclerosis. In this review, we discuss the role of sphingolipid mediators and their metabolizing enzymes in neurologic diseases and putative therapeutic strategies arising thereof

    No influence of dabigatran anticoagulation on hemorrhagic transformation in an experimental model of ischemic stroke

    Get PDF
    Background: Dabigatran etexilate (DE) is a new oral direct thrombin inhibitor. Clinical trials point towards a favourable risk-to-benefit profile of DE compared to warfarin. In this study, we evaluated whether hemorrhagic transformation (HT) occurs after experimental stroke under DE treatment as we have shown for warfarin. Methods: 44 male C57BL/6 mice were pretreated orally with 37.5 mg/kg DE, 75 mg/kg DE or saline and diluted thrombin time (dTT) and DE plasma concentrations were monitored. Ischemic stroke was induced by transient middle cerebral artery occlusion (tMCAO) for 1 h or 3 h. We assessed functional outcome and HT blood volume 24 h and 72 h after tMCAO. Results: After 1 h tMCAO, HT blood volume did not differ significantly between mice pretreated with DE 37.5 mg/kg and controls (1.5±0.5 µl vs. 1.8±0.5 µl, p>0.05). After 3 h tMCAO, DE-anticoagulated mice did also not show an increase in HT, neither at the dose of 37.5 mg/kg equivalent to anticoagulant treatment in the therapeutic range (1.3±0.9 µl vs. control 2.3±0.5 µl, p>0.05) nor at 75 mg/kg, clearly representing supratherapeutic anticoagulation (1.8±0.8 µl, p>0.05). Furthermore, no significant increase in HT under continued anticoagulation with DE 75 mg/kg could be found at 72 h after tMCAO for 1 h (1.7±0.9 µl vs. control 1.6±0.4 µl, p>0.05). Conclusion: Our experimental data suggest that DE does not significantly increase hemorrhagic transformation after transient focal cerebral ischemia in mice. From a translational viewpoint, this indicates that a continuation of DE anticoagulation in case of an ischemic stroke might be safe, but clearly, clinical data on this question are warranted

    Blood levels of Glial Fibrillary Acidic Protein (GFAP) in patients with neurological diseases

    Get PDF
    Background and Purpose: The brain-specific astroglial protein GFAP is a blood biomarker candidate indicative of intracerebral hemorrhage in patients with symptoms suspicious of acute stroke. Comparably little, however, is known about GFAP release in other neurological disorders. In order to identify potential “specificity gaps” of a future GFAP test used to diagnose intracerebral hemorrhage, we measured GFAP in the blood of a large and rather unselected collective of patients with neurological diseases. Methods: Within a one-year period, we randomly selected in-patients of our university hospital for study inclusion. Patients with ischemic stroke, transient ischemic attack and intracerebral hemorrhage were excluded. Primary endpoint was the ICD-10 coded diagnosis reached at discharge. During hospital stay, blood was collected, and GFAP plasma levels were determined using an advanced prototype immunoassay at Roche Diagnostics. Results: A total of 331 patients were included, covering a broad spectrum of neurological diseases. GFAP levels were low in the vast majority of patients, with 98.5% of cases lying below the cut-off that was previously defined for the differentiation of intracerebral hemorrhage and ischemic stroke. No diagnosis or group of diagnoses was identified that showed consistently increased GFAP values. No association with age and sex was found. Conclusion: Most acute and chronic neurological diseases, including typical stroke mimics, are not associated with detectable GFAP levels in the bloodstream. Our findings underline the hypothesis that rapid astroglial destruction as in acute intracerebral hemorrhage is mandatory for GFAP increase. A future GFAP blood test applied to identify patients with intracerebral hemorrhage is likely to have a high specificity

    The perfect crime? : CCSVI not leaving a trace in MS

    Get PDF
    Background: Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system, believed to be triggered by an autoimmune reaction to myelin. Recently, a fundamentally different pathomechanism termed ‘chronic cerebrospinal venous insufficiency’ (CCSVI) was proposed, provoking significant attention in the media and scientific community. Methods: Twenty MS patients (mean age 42.2±13.3 years; median Extended Disability Status Scale 3.0, range 0–6.5) were compared with 20 healthy controls. Extra- and intracranial venous flow direction was assessed by colour-coded duplex sonography, and extracranial venous cross-sectional area (VCSA) of the internal jugular and vertebral veins (IJV/VV) was measured in B-mode to assess the five previously proposed CCSVI criteria. IJV-VCSA≤0.3 cm2 indicated ‘stenosis,’ and IJV-VCSA decrease from supine to upright position ‘reverted postural control.’ The sonographer, data analyser and statistician were blinded to the patient/control status of the participants. Results: No participant showed retrograde flow of cervical or intracranial veins. IJV-VCSA≤0.3 cm2 was found in 13 MS patients versus 16 controls (p=0.48). A decrease in IJV-VCSA from supine to upright position was observed in all participants, but this denotes a physiological finding. No MS patient and one control had undetectable IJV flow despite deep inspiration (p=0.49). Only one healthy control and no MS patients fulfilled at least two criteria for CCSVI. Conclusions: This triple-blinded extra- and transcranial duplex sonographic assessment of cervical and cerebral veins does not provide supportive evidence for the presence of CCSVI in MS patients. The findings cast serious doubt on the concept of CCSVI in MS

    FTY720 treatment in the convalescence period improves functional recovery and reduces reactive astrogliosis in photothrombotic stroke

    Get PDF
    Background: The Sphingosine-1-phosphate (S1P) signaling pathway is known to influence pathophysiological processes within the brain and the synthetic S1P analog FTY720 has been shown to provide neuroprotection in experimental models of acute stroke. However, the effects of a manipulation of S1P signaling at later time points after experimental stroke have not yet been investigated. We examined whether a relatively late initiation of a FTY720 treatment has a positive effect on long-term neurological outcome with a focus on reactive astrogliosis, synapses and neurotrophic factors. Methods: We induced photothrombotic stroke (PT) in adult C57BL/6J mice and allowed them to recover for three days. Starting on post-stroke day 3, mice were treated with FTY720 (1 mg/kg b.i.d.) for 5 days. Behavioral outcome was observed until day 31 after photothrombosis and periinfarct cortical tissue was analyzed using tandem mass-spectrometry, TaqMan®analysis and immunofluorescence. Results: FTY720 treatment results in a significantly better functional outcome persisting up to day 31 after PT. This is accompanied by a significant decrease in reactive astrogliosis and larger post-synaptic densities as well as changes in the expression of vascular endothelial growth factor α (VEGF α). Within the periinfarct cortex, S1P is significantly increased compared to healthy brain tissue. Conclusion: Besides its known neuroprotective effects in the acute phase of experimental stroke, the initiation of FTY720 treatment in the convalescence period has a positive impact on long-term functional outcome, probably mediated through reduced astrogliosis, a modulation in synaptic morphology and an increased expression of neurotrophic factors

    Warfarin Anticoagulation Exacerbates the Risk of Hemorrhagic Transformation after rt-PA Treatment in Experimental Stroke: Therapeutic Potential of PCC

    Get PDF
    Background: Oral anticoagulant therapy (OAT) with warfarin is the standard of stroke prevention in patients with atrial fibrillation. Approximately 30% of patients with cardioembolic strokes are on OAT at the time of symptom onset. We investigated whether warfarin exacerbates the risk of thrombolysis-associated hemorrhagic transformation (HT) in a mouse model of ischemic stroke. Methods: 62 C57BL/6 mice were used for this study. To achieve effective anticoagulation, warfarin was administered orally. We performed right middle cerebral artery occlusion (MCAO) for 3 h and assessed functional deficit and HT blood volume after 24 h. Results: In non-anticoagulated mice, treatment with rt-PA (10 mg/kg i.v.) after 3 h MCAO led to a 5-fold higher degree of HT compared to vehicle-treated controls (4.0±0.5 µl vs. 0.8±0.1, p<0.001). Mice on warfarin revealed larger amounts of HT after rt-PA treatment in comparison to non-anticoagulated mice (9.2±3.2 µl vs. 2.8±1.0, p<0.05). The rapid reversal of anticoagulation by means of prothrombin complex concentrates (PCC, 100 IU/kg) at the end of the 3 h MCAO period, but prior to rt-PA administration, neutralized the exacerbated risk of HT as compared to sham-treated controls (3.8±0.7 µl vs. 15.0±3.8, p<0.001). Conclusion: In view of the vastly increased risk of HT, it seems to be justified to withhold tPA therapy in effectively anticoagulated patients with acute ischemic stroke. The rapid reversal of anticoagulation with PCC prior to tPA application reduces the risk attributed to warfarin pretreatment and may constitute an interesting therapeutic option

    Sphingosine Kinase 2 Modulates Retinal Neovascularization in the Mouse Model of Oxygen-Induced Retinopathy.

    Get PDF
    Purpose Neovascularization is a major cause of blindness in various ocular diseases. Bioactive sphingosine 1-phosphate (S1P), synthesized by two sphingosine kinases (Sphk1, Sphk2), emerged as a key player in a multitude of cellular processes, including cell survival, proliferation, inflammation, migration, and angiogenesis. We investigated the role of Sphk2, S1P, and S1P receptors (S1PR) during retinal neovascularization using the oxygen-induced retinopathy mouse model (OIR). Methods Sphk2 overexpressing (tgSphk2) and Sphk2 knockout (Sphk2-/-) mice were used in the OIR model, exposed to 75% O2 over 5 days from postnatal day (P)7 to 12 to initiate vessel regression. After returning to room air, these mice developed a marked neovascularization. Retinae recovered from untreated and treated eyes at P7, P12, P14, and P17 were used for lectin-stained retinal whole mounts, mass spectrometry, and quantitative real-time PCR. Results tgSphk2 mice showed higher retinal S1P concentrations, accelerated retinal angiogenesis, and increased neovascularization. Expression of S1PR, vascular endothelial growth factor α (VEGFα), and angiopoietin 1 and 2 was differentially regulated during the course of OIR in the different genotypes. Sphk2-/- displayed a markedly reduced retinal angiogenesis and neovascularization as well as decreased VEGFα and angiopoietin expression. Conclusions Using genetic models of Sphk2 overexpression or deletion we demonstrate a strong impact of Sphk2/S1P on retinal vasculopathy and expression of vascular growth factors like VEGF and angiopoietin in the retina. Consequently, Sphk2, S1P, and S1PR may offer attractive novel therapeutic targets for ischemic retinopathies
    corecore