13,854 research outputs found

    Modeling the pilot in visually controlled flight

    Get PDF
    The simplest model for a human operator is a gain with a time delay. However, there have been no comprehensive studies evaluating human control strategies in visually controlled flight. The results of preliminary studies on this topic are described. Human visually guided flight control is important both in low level flight, where it predominates, and in higher altitude flights, where instrument failure is always a potential danger. Two general approaches to this problem, one founded on high order perceptual psychophysics and the other on control systems engineering, are described. Initial results show that the use of control engineering modeling techniques, together with a psychophysical analysis of information in the perspective scene, holds promise for capturing the manual control strategies used during visual flight

    Continuum Moment Equations on the Lattice

    Get PDF
    An analysis is given as to why one can not directly evaluate continuum moment equations, i.e., equations involving powers of the position variable times charge, current, or energy/momentum operators, on the lattice. I examine two cases: a three point function evaluation of the nucleon magnetic moment and a four point function (charge overlap) evaluation of the pseudoscalar charge radius.Comment: 9 pages; 1 ps figur

    Stochastic Mean-Field Theory: Method and Application to the Disordered Bose-Hubbard Model at Finite Temperature and Speckle Disorder

    Full text link
    We discuss the stochastic mean-field theory (SMFT) method which is a new approach for describing disordered Bose systems in the thermodynamic limit including localization and dimensional effects. We explicate the method in detail and apply it to the disordered Bose-Hubbard model at finite temperature, with on-site box disorder, as well as experimentally relevant unbounded speckle disorder. We find that disorder-induced condensation and reentrant behavior at constant filling are only possible at low temperatures, beyond the reach of current experiments [Pasienski et al., arXiv:0908.1182]. Including off-diagonal hopping disorder as well, we investigate its effect on the phase diagram in addition to pure on-site disorder. To make contact to present experiments on a quantitative level, we also combine SMFT with an LDA approach and obtain the condensate fraction in the presence of an external trapping potential.Comment: 19 pages, 15 figures. Extended definition of Bose glass phase, taking collective excitations into account. 1 figure added, extended and updated reference

    True ternary fission of superheavy nuclei

    Full text link
    We found that a true ternary fission with formation of a heavy third fragment (a new type of radioactivity) is quite possible for superheavy nuclei due to the strong shell effects leading to a three-body clusterization with the two doubly magic tin-like cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tin-like clusters with appropriate kinematics in low-energy collisions of medium mass nuclei with actinide targets. The three-body quasi-fission process could be even more pronounced for giant nuclear systems formed in collisions of heavy actinide nuclei. In this case a three-body clusterization might be proved experimentally by detection of two coincident lead-like fragments in low-energy U+U collisions.Comment: 4 pages, 7 figure

    Synthetic perspective optical flow: Influence on pilot control tasks

    Get PDF
    One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks

    Differences in Iowa farms and their significance in the planning of agricultural programs

    Get PDF
    This bulletin reports the results of a study designed to measure the variations in cropping and livestock systems within the type·of-farming areas of Iowa. The national agricultural adjustment programs of recent years have recognized the variations between types of farming in different regions. The differences between farming systems within regions have received only limited recognition. Some of the shortcomings of the current agricultural programs have been attributed to their failure to make adequate allowance for individual farm variations

    Constraints on the Equation-of-State of neutron stars from nearby neutron star observations

    Get PDF
    We try to constrain the Equation-of-State (EoS) of supra-nuclear-density matter in neutron stars (NSs) by observations of nearby NSs. There are seven thermally emitting NSs known from X-ray and optical observations, the so-called Magnificent Seven (M7), which are young (up to few Myrs), nearby (within a few hundred pc), and radio-quiet with blackbody-like X-ray spectra, so that we can observe their surfaces. As bright X-ray sources, we can determine their rotational (pulse) period and their period derivative from X-ray timing. From XMM and/or Chandra X-ray spectra, we can determine their temperature. With precise astrometric observations using the Hubble Space Telescope, we can determine their parallax (i.e. distance) and optical flux. From flux, distance, and temperature, one can derive the emitting area - with assumptions about the atmosphere and/or temperature distribution on the surface. This was recently done by us for the two brightest M7 NSs RXJ1856 and RXJ0720. Then, from identifying absorption lines in X-ray spectra, one can also try to determine gravitational redshift. Also, from rotational phase-resolved spectroscopy, we have for the first time determined the compactness (mass/radius) of the M7 NS RBS1223. If also applied to RXJ1856, radius (from luminosity and temperature) and compactness (from X-ray data) will yield the mass and radius - for the first time for an isolated single neutron star. We will present our observations and recent results.Comment: refereed NPA5 conference proceedings, in pres

    Coherent radiation of an ultra-relativistic charged particle channeled in a periodically bent crystal

    Full text link
    We suggest a new type of the undulator radiation which is generated by an ultra-relativistic particle channeled along a periodically bent crystallographic plane or axis. The electromagnetic radiation arises mainly due to the bending of the particle's trajectory, which follows the shape of the channel. The parameters of this undulator, which totally define the spectrum and the angular distribution of the radiation (both spontaneous and stimulated), depend on the type of the crystal and the crystallographic plane (axis), on the type of a projectile and its energy, and on the shape of the bent channel, and, thus, can be varied significantly by varying these characteristics. As an example, we consider the acoustically induced radiation (AIR) which is generated by ultra-relativistic particles channeled in a crystal which is bent by a transverse acoustic wave. The AIR mechanism allows to make the undulator with the main parameters varying in wide ranges, which are inaccessible in the undulators based on the motion of particles in the periodic magnetic fields and also in the field of the laser radiation. The intensity of AIR can be easily made larger than the intensity of the radiation in a linear crystal and can be varied in a wide range by varying the frequency and the amplitude of the acoustic wave in the crystal. A possibility to generate stimulated emission of high-energy photons (in keV - MeV region) is also discussed.Comment: published in J. Phys. G: Nucl. Part. Phys. 24 (1998) L45-L53, http://www.iop.or

    Physics of ion beam cancer therapy: a multi-scale approach

    Full text link
    We propose a multi-scale approach to understand the physics related to ion-beam cancer therapy. It allows the calculation of the probability of DNA damage as a result of irradiation of tissues with energetic ions, up to 430 MeV/u. This approach covers different scales, starting from the large scale, defined by the ion stopping, followed by a smaller scale, defined by secondary electrons and radicals, and ending with the shortest scale, defined by interactions of secondaries with the DNA. We present calculations of the probabilities of single and double strand breaks of DNA, suggest a way to further expand such calculations, and also make some estimates for glial cells exposed to radiation.Comment: 18 pag,5 fig, submitted to PR
    corecore