358 research outputs found

    Coherent resonant tunneling in ac fields

    Full text link
    We have analyzed the tunneling transmission probability and electronic current density through resonant heterostructures in the presence of an external electromagnetic field. In this work, we compare two different models for a double barrier : In the first case the effect of the external field is taken into account by spatially dependent AC voltages and in the second one the electromagnetic field is described in terms of a photon field that irradiates homogeneously the whole sample. While in the first description the tunneling takes place mainly through photo sidebands in the case of homogeneous illumination the main effective tunneling channels correspond to the coupling between different electronic states due to photon absorption and emission. The difference of tunneling mechanisms between these configurations is strongly reflected in the transmission and current density which present very different features in both cases. In order to analyze these effects we have obtained, within the Transfer Hamiltonian framework, a general expression for the transition probability for coherent resonant tunneling in terms of the Green's function of the system.Comment: 16 pages,Figures available upon request,to appear in Phys.Rev B (15 April 1996

    TGFβ receptor II gene deletion in leucocytes prevents cerebral vasculitis in bacterial meningitis

    Get PDF
    In bacterial meningitis, chemokines lead to recruitment of polymorphonuclear leucocytes (PMN) into the CNS. At the site of infection in the subarachnoid space, PMN release reactive oxygen species, reactive nitrogen intermediates (RNI) and interleukin-1β (IL-1β). Although these immune factors assist in clearance of bacteria, they also result in neuronal injury associated with meningitis. Transforming growth factor beta (TGFβ) is a potent deactivator of PMN and macrophages since TGFβ suppresses the production of ROI, RNI and IL-1. Here, we report that the deletion of the TGFβ receptor II gene in PMN enhances PMN recruitment into the CNS of mice with Streptococcus pneumoniae meningitis. This was associated with more efficient clearance of bacteria, and almost complete prevention of intracerebral necrotizing vasculitis. Differences in PMN in the CNS of infected control mice and mice lacking TGFβ receptor II were not explained by altered expression of chemokines acting on PMN. Instead, TGFβ was found to impair the expression of l (leucocyte)-selectin on PMN from control mice but not from mice lacking TGFβ receptor II. l-Selectin is known to be essential for PMN recruitment in bacterial meningitis. We conclude that defective TGFβ signalling in PMN is beneficial in bacterial meningitis by ameliorating migration of PMN and bacterial clearanc

    CIITA-induced occupation of MHC class II promoters is independent of the cooperative stabilization of the promoter-bound multi-protein complexes

    Get PDF
    Precise regulation of MHC class II expression plays a crucial role in the control of the immune response. The transactivator CIITA behaves as a master controller of constitutive and inducible MHC class II gene activation, but its exact mechanism of action is not known. Activation of MHC class II promoters requires binding of at least three distinct multi-protein complexes (RFX, X2BP and NF-Y). It is known that the stability of this binding results from cooperative interactions between these proteins. We show here that expression of CIITA in MHC class II- cells triggers occupation of the promoters by these complexes. This observation raised the possibility that the effect of CIITA on promoter occupation is mediated by an effect on the cooperative stabilization of the DNA-bound multi-protein complexes. We show, however, that the presence of CIITA does not affect the stability of the higher-order protein complex formed on DNA by RFX, X2BP and NF-Y. This suggests other mechanisms for CIITA-induced promoter occupancy, such as an effect on chromatin structure leading to increased accessibility of MHC class II promoters. This ability of CIITA to facilitate promoter occupation is undissociable from its transactivation potential. Finally, we conclude that this effect of CIITA is cell-type specific, since expression of CIITA is not required for normal occupation of MHC class II promoters in B lymphocyte

    Transcriptional regulation of matrix metalloproteinase-1 and collagen 1A2 explains the anti-fibrotic effect exerted by proteasome inhibition in human dermal fibroblasts

    Get PDF
    INTRODUCTION: Extracellular matrix (ECM) turnover is controlled by the synthetic rate of matrix proteins, including type I collagen, and their enzymatic degradation by matrix metalloproteinases (MMPs). Fibrosis is characterized by an unbalanced accumulation of ECM leading to organ dysfunction as observed in systemic sclerosis. We previously reported that proteasome inhibition (PI) in vitro decreases type I collagen and enhances MMP-1 production by human fibroblasts, thus favoring an antifibrotic fibroblast phenotype. These effects were dominant over the pro-fibrotic phenotype induced by transforming growth factor (TGF)-beta. Here we investigate the molecular events responsible for the anti-fibrotic phenotype induced in fibroblasts by the proteasome inhibitor bortezomib. METHODS: The steady-state mRNA levels of COL1A1, COL1A2, TIMP-1, MMP-1, and MMP-2 were assessed by quantitative PCR in human dermal fibroblasts cultured in the presence of TGF-beta, bortezomib, or both. Transient fibroblast transfection was performed with wild-type and mutated COL1A1 and MMP-1 promoters. Chromatin immunoprecipitation, electrophoretic mobility shift assay (EMSA), and DNA pull-down assays were used to assess the binding of c-Jun, SP1, AP2, and Smad2 transcription factors. Immunoblotting and immunofluorescent microscopy were performed for identifying phosphorylated transcription factors and their cellular localization. RESULTS: Bortezomib decreased the steady-state mRNA levels of COL1A1 and COL1A2, and abrogated SP1 binding to the promoter of COL1A2 in both untreated and TGF-beta-activated fibroblasts. Reduced COL1A2 expression was not due to altered TGF-beta-induced Smad2 phosphorylation, nuclear translocation, or binding to the COL1A2 promoter. In contrast to collagen, bortezomib specifically increased the steady-state mRNA levels of MMP-1 and enhanced the binding of c-Jun to the promoter of MMP-1. Furthermore, disruption of the proximal AP-1-binding site in the promoter of MMP-1 severely impaired MMP-1 transcription in response to bortezomib. CONCLUSIONS: By altering the binding of at least two transcription factors, c-Jun and SP1, proteasome inhibition results in increased production of MMP-1 and decreased synthesis of type I collagen in human dermal fibroblasts. Thus, the antifibrotic phenotype observed in fibroblasts submitted to proteasome inhibition results from profound modifications in the binding of key transcription factors. This provides a novel rationale for assessing the potential of drugs targeting the proteasome for their anti-fibrotic properties

    Narcolepsy: autoimmunity, effector T cell activation due to infection, or T cell independent, major histocompatibility complex class II induced neuronal loss?

    Get PDF
    Human narcolepsy with cataplexy is a neurological disorder, which develops due to a deficiency in hypocretin producing neurons in the hypothalamus. There is a strong association with human leucocyte antigens HLA-DR2 and HLA-DQB1*0602. The disease typically starts in adolescence. Recent developments in narcolepsy research support the hypothesis of narcolepsy being an immune-mediated disease. Narcolepsy is associated with polymorphisms of the genes encoding T cell receptor alpha chain, tumour necrosis factor alpha and tumour necrosis factor receptor II. Moreover the rate of streptococcal infection is increased at onset of narcolepsy. The hallmarks of anti-self reactions in the tissue—namely upregulation of major histocompatibility antigens and lymphocyte infiltrates—are missing in the hypothalamus. These findings are questionable because they were obtained by analyses performed many years after onset of disease. In some patients with narcolepsy autoantibodies to Tribbles homolog 2, which is expressed by hypocretin neurons, have been detected recently. Immune-mediated destruction of hypocretin producing neurons may be mediated by microglia/macrophages that become activated either by autoantigen specific CD4+ T cells or superantigen stimulated CD8+ T cells, or independent of T cells by activation of DQB1*0602 signalling. Activation of microglia and macrophages may lead to the release of neurotoxic molecules such as quinolinic acid, which has been shown to cause selective destruction of hypocretin neurons in the hypothalamu

    Transcription-coupled deposition of histone modifications during MHC class II gene activation

    Get PDF
    Posttranslational histone modifications associated with actively expressed genes are generally believed to be introduced primarily by histone-modifying enzymes that are recruited by transcription factors or their associated co-activators. We have performed a comprehensive spatial and temporal analyses of the histone modifications that are deposited upon activation of the MHC class II gene HLA-DRA by the co-activator CIITA. We find that transcription-associated histone modifications are introduced during two sequential phases. The first phase precedes transcription initiation and is characterized exclusively by a rapid increase in histone H4 acetylation over a large upstream domain. All other modifications examined, including the acetylation and methylation of several residues in histone H3, are restricted to short regions situated at or within the 5′ end of the gene and are established during a second phase that is concomitant with ongoing transcription. This second phase is completely abrogated when elongation by RNA polymerase II is blocked. These results provide strong evidence that transcription elongation can play a decisive role in the deposition of histone modification patterns associated with inducible gene activatio

    Induction of inhibitory central nervous system-derived and stimulatory blood-derived dendritic cells suggests a dual role for granulocyte-macrophage colony-stimulating factor in central nervous system inflammation

    Get PDF
    The mononuclear phagocyte system, particularly dendritic cells, plays several pivotal roles in the development of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Here, we demonstrate that functionally distinct dendritic cell subpopulations are present in the central nervous system during experimental autoimmune encephalomyelitis. At peak experimental autoimmune encephalomyelitis, the majority of dendritic cells consisted of a CD11b+F4/80+ inflammatory dendritic cell subtype. Both granulocyte-macrophage colony-stimulating factor and chemokine (C-C motif) ligand 2 were previously suggested to recruit ‘inflammatory' monocyte-derived dendritic cells to the central nervous system during experimental autoimmune encephalomyelitis. We show that intra-cerebral production of granulocyte-macrophage colony-stimulating factor leading to chemokine (C-C motif) ligand 2 induction and attraction of chemokine (C-C motif) receptor 2-positive precursors suffices to recruit dendritic cell populations identical to those observed in experimental autoimmune encephalomyelitis into the central nervous system of healthy mice. This does not occur with fms-like tyrosine kinase-3-ligand treatment. Both during experimental autoimmune encephalomyelitis and upon intra-cerebral granulocyte-macrophage colony-stimulating factor production, all myeloid dendritic cells, lymphoid dendritic cells and periphery-derived inflammatory dendritic cells stimulated T cell proliferation, whereas inflammatory dendritic cells that differentiated from central nervous system precursors inhibited T cell activation and pro-inflammatory cytokine production. Despite the capacity of granulocyte-macrophage colony-stimulating factor to induce central nervous system-derived inhibitory inflammatory dendritic cells, the administration of granulocyte-macrophage colony-stimulating factor into mice with experimental autoimmune encephalomyelitis resulted in exacerbated disease. Granulocyte-macrophage colony-stimulating factor thus has a dual role in the central nervous system: it directs both central nervous system-derived dendritic cells towards an inhibitory phenotype and recruits peripheral dendritic cells exhibiting pro-inflammatory function

    Transcription-coupled deposition of histone modifications during MHC class II gene activation

    Get PDF
    Posttranslational histone modifications associated with actively expressed genes are generally believed to be introduced primarily by histone-modifying enzymes that are recruited by transcription factors or their associated co-activators. We have performed a comprehensive spatial and temporal analyses of the histone modifications that are deposited upon activation of the MHC class II gene HLA-DRA by the co-activator CIITA. We find that transcription-associated histone modifications are introduced during two sequential phases. The first phase precedes transcription initiation and is characterized exclusively by a rapid increase in histone H4 acetylation over a large upstream domain. All other modifications examined, including the acetylation and methylation of several residues in histone H3, are restricted to short regions situated at or within the 5′ end of the gene and are established during a second phase that is concomitant with ongoing transcription. This second phase is completely abrogated when elongation by RNA polymerase II is blocked. These results provide strong evidence that transcription elongation can play a decisive role in the deposition of histone modification patterns associated with inducible gene activation

    Expression of RAB4B, a protein governing endocytic recycling, is co-regulated with MHC class II genes

    Get PDF
    The small GTPase RAB4 regulates endocytic recycling, a process that contributes to Major Histocompatibility Complex (MHC)-mediated antigen presentation by specialized antigen presenting cells (APC) of the immune system. The gene encoding the RAB4B isoform of RAB4 was singled out by two complementary genome-wide screens. One of these consisted of a computer scan to identify genes containing characteristic MHC class II-related regulatory sequences. The second was the use of chromatin immunoprecipitation coupled to microarrays (ChIP-on-chip) to identify novel targets of a transcriptional co-activator called the MHC class II transactivator (CIITA). We show that the RAB4B gene is regulated by a typical MHC class II-like enhancer that is controlled directly by both CIITA and the multiprotein transcription factor complex known as the MHC class II enhanceosome. RAB4B expression is thus activated by the same regulatory machinery that is known to be essential for the expression of MHC class II genes. This molecular link between the transcriptional activation of RAB4B and MHC class II genes implies that APC boost their antigen presentation capacity by increasing RAB4-mediated endocytic recycling
    corecore