10 research outputs found

    Crystal Structure of Human AKT1 with an Allosteric Inhibitor Reveals a New Mode of Kinase Inhibition

    Get PDF
    AKT1 (NP_005154.2) is a member of the serine/threonine AGC protein kinase family involved in cellular metabolism, growth, proliferation and survival. The three human AKT isozymes are highly homologous multi-domain proteins with both overlapping and distinct cellular functions. Dysregulation of the AKT pathway has been identified in multiple human cancers. Several clinical trials are in progress to test the efficacy of AKT pathway inhibitors in treating cancer. Recently, a series of AKT isozyme-selective allosteric inhibitors have been reported. They require the presence of both the pleckstrin-homology (PH) and kinase domains of AKT, but their binding mode has not yet been elucidated. We present here a 2.7 Ã… resolution co-crystal structure of human AKT1 containing both the PH and kinase domains with a selective allosteric inhibitor bound in the interface. The structure reveals the interactions between the PH and kinase domains, as well as the critical amino residues that mediate binding of the inhibitor to AKT1. Our work also reveals an intricate balance in the enzymatic regulation of AKT, where the PH domain appears to lock the kinase in an inactive conformation and the kinase domain disrupts the phospholipid binding site of the PH domain. This information advances our knowledge in AKT1 structure and regulation, thereby providing a structural foundation for interpreting the effects of different classes of AKT inhibitors and designing selective ones

    Identification of a New Class of Glucokinase Activators through Structure-Based Design

    No full text
    Glucose flux through glucokinase (GK) controls insulin release from the pancreas in response to high glucose concentrations. Glucose flux through GK also contributes to reducing hepatic glucose output. Because many individuals with type 2 diabetes appear to have an inadequacy or defect in one or both of these processes, compounds that can activate GK may serve as effective treatments for type 2 diabetes. Herein we report the identification and initial optimization of a novel series of allosteric glucokinase activators (GKAs). We discovered an initial thiazolylamino pyridine-based hit that was optimized using a structure-based design strategy and identified <b>26</b> as an early lead. Compound <b>26</b> demonstrated a good balance of in vitro potency and enzyme kinetic parameters and demonstrated blood glucose reductions in oral glucose tolerance tests in both C57BL/6J mice and high-fat fed Zucker diabetic fatty rats

    Discovery of 2‑Pyridylureas as Glucokinase Activators

    No full text
    Glucokinase (GK) is the rate-limiting step for insulin release from the pancreas in response to high levels of glucose. Flux through GK also contributes to reducing hepatic glucose output. Since many individuals with type 2 diabetes appear to have an inadequacy or defect in one or both of these processes, identifying compounds that can allosterically activate GK may address this issue. Herein we report the identification and initial optimization of a novel series of glucokinase activators (GKAs). Optimization led to the identification of <b>33</b> as a compound that displayed activity in an oral glucose tolerance test (OGTT) in normal and diabetic mice

    Novel Series of Potent Glucokinase Activators Leading to the Discovery of AM-2394

    No full text
    Glucokinase (GK) catalyzes the phosphorylation of glucose to glucose-6-phosphate. We present the structure–activity relationships leading to the discovery of <b>AM-2394</b>, a structurally distinct GKA. <b>AM-2394</b> activates GK with an EC<sub>50</sub> of 60 nM, increases the affinity of GK for glucose by approximately 10-fold, exhibits moderate clearance and good oral bioavailability in multiple animal models, and lowers glucose excursion following an oral glucose tolerance test in an <i>ob/ob</i> mouse model of diabetes
    corecore