158 research outputs found

    Electromagnetically induced transparency-based slow and stored light in warm atoms

    Get PDF
    This paper reviews recent efforts to realize a high-efficiency memory for optical pulses using slow and stored light based on electromagnetically induced transparency (EIT) in ensembles of warm atoms in vapor cells. After a brief summary of basic continuous-wave and dynamic EIT properties, studies using weak classical signal pulses in optically dense coherent media are discussed, including optimization strategies for stored light efficiency and pulse-shape control, and modification of EIT and slow/stored light spectral properties due to atomic motion. Quantum memory demonstrations using both single photons and pulses of squeezed light are then reviewed. Finally a brief comparison with other approaches is presented

    Investigation of laser polarized xenon magnetic resonance

    Get PDF
    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR

    Tunable negative refraction without absorption via electromagnetically induced chirality

    Get PDF
    We show that negative refraction with minimal absorption can be obtained by means of quantum interference effects similar to electromagnetically induced transparency. Coupling a magnetic dipole transition coherently with an electric dipole transition leads to electromagnetically induced chirality, which can provide negative refraction without requiring negative permeability, and also suppresses absorption. This technique allows negative refraction in the optical regime at densities where the magnetic susceptibility is still small and with refraction/absorption ratios that are orders of magnitude larger than those achievable previously. Furthermore, the value of the refractive index can be fine-tuned via external laser fields, which is essential for practical realization of sub-diffraction-limit imaging.Comment: 4 pages, 5 figures (shortened version, submitted to PRL

    Solid-state electronic spin coherence time approaching one second

    Full text link
    Solid-state electronic spin systems such as nitrogen-vacancy (NV) color centers in diamond are promising for applications of quantum information, sensing, and metrology. However, a key challenge for such solid-state systems is to realize a spin coherence time that is much longer than the time for quantum spin manipulation protocols. Here we demonstrate an improvement of more than two orders of magnitude in the spin coherence time (T2T_2) of NV centers compared to previous measurements: T2≈0.5T_2 \approx 0.5 s at 77 K, which enables ∼107\sim 10^7 coherent NV spin manipulations before decoherence. We employed dynamical decoupling pulse sequences to suppress NV spin decoherence due to magnetic noise, and found that T2T_2 is limited to approximately half of the longitudinal spin relaxation time (T1T_1) over a wide range of temperatures, which we attribute to phonon-induced decoherence. Our results apply to ensembles of NV spins and do not depend on the optimal choice of a specific NV, which could advance quantum sensing, enable squeezing and many-body entanglement in solid-state spin ensembles, and open a path to simulating a wide range of driven, interaction-dominated quantum many-body Hamiltonians
    • …
    corecore