62,742 research outputs found
Murder by fake drugs - prioritising the measures available to tackle the problem [Electronic Letter]
Workshop on Magmatic Processes of Early Planetary Crusts: Magma Oceans and Stratiform Layered Intrusions
The significance of the lunar highland pristine cumulate samples were reevaluated with the aid of the additional insights provided by geologically constrained terrestrial investigations. This exercise involved a review of the state of knowledge about terrestrial and lunar cumulate rocks as well as an enumeration and reevaluation of the processes hypothesized to have been responsible for their formation, both classically and at present
Influence of Visual Feedback On Dynamic Balance Control in Chronic Stroke Survivors
Chronic stroke survivors have an increased incidence of falls during walking, suggesting changes in dynamic balance control post-stroke. Despite this increased incidence of falls during walking, balance control is often studied only in standing. The purpose of this study was to quantify deficits in dynamic balance control during walking, and to evaluate the influence of visual feedback on this control in stroke survivors. Ten individuals with chronic stroke, and ten neurologically intact individuals participated in this study. Walking performance was assessed while participants walked on an instrumented split-belt treadmill with different types of visual feedback. Dynamic balance control was quantified using both the extent of center of mass (COM) movement in the frontal plane over a gait cycle (COM sway), and base of support (step width). Stroke survivors walked with larger COM sway and wider step widths compared to controls. Despite these baseline differences, both groups walked with a similar ratio of step width to COM sway (SW/COM). Providing a stationary target with a laser reference of body movement reduced COM sway only in the stroke group, indicating that visual feedback of sway alters dynamic balance control post-stroke. These results demonstrate that stroke survivors attempt to maintain a similar ratio of step width to COM movement, and visual cues can be used to help control COM movement during walking post-stroke
Flame detector operable in presence of proton radiation
A detector of ultraviolet radiation for operation in a space vehicle which orbits through high intensity radiation areas is described. Two identical ultraviolet sensor tubes are mounted within a shield which limits to acceptable levels the amount of proton radiation reaching the sensor tubes. The shield has an opening which permits ultraviolet radiation to reach one of the sensing tubes. The shield keeps ultraviolet radiation from reaching the other sensor tube, designated the reference tube. The circuitry of the detector subtracts the output of the reference tube from the output of the sensing tube, and any portion of the output of the sensing tube which is due to proton radiation is offset by the output of the reference tube. A delay circuit in the detector prevents false alarms by keeping statistical variations in the proton radiation sensed by the two sensor tubes from developing an output signal
Stress versus temperature dependent activation energies in creep
The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt
Ca2+ transients are not required as signals for long-term neurite outgrowth from cultured sympathetic neurons
A method for clamping cytosolic free Ca2+ ([Ca2+]i) in cultures of rat sympathetic neurons at or below resting levels for several days was devised to determine whether Ca2+ signals are required for neurite outgrowth from neurons that depend on Nerve Growth Factor (NGF) for their growth and survival. To control [Ca2+]i, normal Ca2+ influx was eliminated by titration of extracellular Ca2+ with EGTA and reinstated through voltage-sensitive Ca2+ channels. The rate of neurite outgrowth and the number of neurites thus became dependent on the extent of depolarization by KCl, and withdrawal of KCl caused an immediate cessation of growth. Neurite outgrowth was completely blocked by the L type Ca2+ channel antagonists nifedipine, nitrendipine, D600, or diltiazem at sub- or micromolar concentrations. Measurement of [Ca2+]i in cell bodies using the fluorescent Ca2+ indicator fura-2 established that optimal growth, similar to that seen in normal medium, was obtained when [Ca2+]i was clamped at resting levels. These levels of [Ca2+]i were set by serum, which elevated [Ca2+]i by integral of 30 nM, whereas the addition of NGF had no effect on [Ca2+]i. The reduction of [Ca2+]o prevented neurite fasciculation but this had no effect on the rate of neurite elongation or on the number of extending neurites. These results show that neurite outgrowth from NGF-dependent neurons occurs over long periods in the complete absence of Ca2+ signals, suggesting that Ca2+ signals are not necessary for operating the basic machinery of neurite outgrowth
- …