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Abstract

The activation energy for creep at low stresses

and elevated temperatures is lattice diffu-

sion, where the rate controlling mechanism
for deformation is dislocation climb. At

higher stresses and intermediate temperatures,
the rate controlling mechanism changes from
that of dislocation climb to one of obstacle-

controlled dislocation glide. Along with this

change, there occurs a change in the activa-

tion energy. It is shown that a temperature-
dependent Gibbs free energy does a good job

of correlating steady-state creep data, while

a stress-dependent Gibbs free energy does

a less desirable job of correlating the same

data. Applications are made to copper and

a LiF-22mol.%CaF2 hypereutectic salt.

1 Introduction

Choosing the free energy for activation (or

Gibbs free energy), AG, as the thermody-
namic state function implies that stress, _r, and

absolute temperature, T, are the indel_endent

state variables, i.e. AG = AG(o',T). This
state function is related to the activation en-

thalpy, AH, through the isothermal relation-

ship
AG = AH - T AS

where the activation entropy, AS, can be ex-

pressed as

OAG

Combining these two relationships results in

the expression [I]

Q=_AH- O(AG/T) a0 (l/T) (1)

where Q is the activation energy. This is a

useful relationship because it provides a means

whereby functional forms for the free energy
can be determined from experimental data.

The probability, P, for the occurrence of an

equilibrium fluctuation in energy greater than

AG at a given absolute temperature is pro-
vided by Boltzmann's expression

where R is the universal gas constant, i.e.

R = 8.314 J/mol.K. The creep rate
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is taken to be that fraction of the maximum

attainable creep rate, to, which is allocated by

this probablility of fluctuation [1].

The objective of this paper is to deter-

mine, at least for polycrystalline Cu and

LiF-22%CaF_, what functional forms for the

Gibbs free energy best correlate experimental

creep data, especially in the domain of power-
law breakdown.

2 Thermal Activation

Three formulations for activation energy are

considered, from which three different equa-

tions for free energy axe derived. All three

are utilized in the literature to correlate creep
data. The ability of Eqn. 2 to correlate ex-

perimental creep data using these three free

energies is further investivated in this paper.

2.1 Q = Constant

Considering the activation energy to be con-

stant valued, i.e.

Q = Qi

where Qt is the activation energy for lattice
or self diffusion, then from Eqn. 1 one quickly
obtains

AG = ql (3)

as the expression for the free energy.

A constant-valued activation energy for

creep, Q¢, roughly equivalent to that of lattice

diffusion, i.e. Q¢ _ Ql, is universally observed

in the high-temperature creep of crystalline

solids, where dislocation climb is the rate con-

trolling mechanism [2]. This is a prominent

mechanism when temperatures exceed about

0.5T, n, where Tm is the absolute melting tem-

perature.

2.2 Q = Q(a)

At higher stresses and lower temperatures, one

may consider the activation energy to be a

function of stress; in particular, let this stress
dependence be linear such that

where AF is the enthalpy of activation in the
absence of stress, and ? is the maximum at-

tainable stress state. From Eqn. 1, one readily
obtains

AG=AF(1-_) (4)

as the expression for the free energy.

A free energy of this form is characteristic

of obstacle-controlled dislocation glide, where

a uniform distribution of 'rectangular' obsta-

cles is. assumed [1]. Figure 1 demonstrates the

viability of such an activation energy. Here

the activation energy observed during creep is
normalized by the activation energy for lattice

diffusion. Each experimental value for Q rep-

resents the slope of a line in a plot of ln(_)
vs. T -1 for a set of creep tests conducted at

the same stress level but at various tempera-
tures. The solid lines in Fig. I represent this

stress-dependent activation energy using the

constants given in Tables 1 and 2 for Cu and

LiF-22%CaF_I Even though there is scat-

ter amongst the data, this relationship does a

reasonably good job of correlating these data.

2.3 Q = Q(T)

Finally, let the activation energy be a function

of temperature; in particular, consider a linear

temperature dependence such that

T

Q = -_t O¢ where O < T < Tt

and Tt is a transition temperature above which

the activation energy is taken to be Qc. When
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Figure 1: Stress dependence of the activation

energy for creep. Data for LiF-22%CaF_ are

from RAJ _L WHITTENBERGER [3] (o). Data

for copper are from RAJ & LANGDON [4] (O).

Constant ] Units
A s -1

Ae

A# ......s -1
b m

C MPa

Do mU/s

AF J/mol.
n

Q_ J/mol.

Qt J/mol.

T,,, K
Tt K

tL MPa
MPa

[ Value

1 x 109

1 x 10 r ......

5 x 10s

2.56 x 10 -_° _]
55

6.1 x 10 -5 [4]

190,000

5

200,000

21o,ooo[4]
1356 [5]

610

47,500- 17T [4]
230

Table 1: Constants for copper.

Constant [

A

A_

Ag
b

C

Do
AF

n

Q_
Qt

Units
-1$

-1S

m

MPa

m2/s

J/mol.

J/mol.

J/tool.

[ Value

5 × i015
1 x 1014

1 x 10:7

3.86 x 10-I°'[ "
27

1.3 x 10-uS

390,000

5

320,000[3]
360,0005

Tm K 1047_[fl]
Tt K 850

MPa 52,000 - 29T [6]
MPa 230

Table 2: Constants for LiF-22%CaF2.

t) Value for CaF2 [3]. _) Diffusion of Ca +: in

CaF2 [7].



thisrelationshipissubstitutedintoEqn.1and
integrated,oneobtains[8]

AG=_ In +1 ; 0<T<T,

(5)
as the expression for the free energy. The con-

stant of integration in this result was deter-
mined from the boundary condition: Q = Qc

at T = T,.

There appears to be no theoretical motiva-

tion for a linear, temperature-dependent, ac-

tivation energy; rather, its motivation is phe-
nomenological [8]. The capability of such an

expression to correlate experimental data is

demonstrated in Fig. 2 for copper. Similar
data for the LiF-22%CaF_ hypereutectic salt

are not available. As in Fig. 1, the activa-

tion energy observed during creep is normal-

ized by the activation energy for lattice diffu-

sion. However, here each experimental value

for Q was obtained from a steady-state creep
test where the stress was held constant and a

step change in temperature occurred.

The solid curve in Fig. 2 represents Q =

TQ_/_ for T _< Tt, and Q = Q¢ for T > T,,

using the constants given in Table 1. This
curve does a reasonable job of correlating the

data over the entire temperature range, except

in the neighborhood of._ 0.6 Tm where there is

a dramatic reduction in Q. The investigators

who performed these experiments attribute

this reduction to the presence of an additional

diffusion mechanism, i.e. diffusion along dis-

location pipes [11, 12]. However, other re-

searchers do not find experimental evidence to

support this conclusion [4, 13, 14, 15, 16]. It

has also been suggested that this intermediate

activation energy !sass0ciated with the mech-
anism of cross slip [13, 14, 15, 16]. Conse-

quently, pipe or core dVffusion is not iflcorpo-
rated into our formulation, and a satisfactory

explanation of these data remains to be given:
The activation energy vs. temperature re-

+

0.0
0.00 0.25 0.50 0.75 1.00

T/Tm

Figure 2: Temperature dependence of the ac-

tivation energy for creep of copper. Data

are from TIETZ _; DORN [9] (o), LANDON

et al. [10] (*), FELTHAM & MEAKIN [11] (+)

and BARRETT & SHERBY [12](x).



lationpresentedin Fig. 2 is not unique,but
is knownto dependupontheaverageof the
strainratesusedtoobtaintheactivationener-
gies[2].Astrain-ratesensitivetransitiontem-
peratureisnotconsidered,asthisseemsto be
anunnecessarycomplicationin applications.

3 Models for Creep

Two different methods for modelling creep are

presented. The first is a theory based on dis-

location kinetics. The second is a phenomeno-
logical approach to creep. The capablility of

each method in correlating creep data is ex-

plored. These two approaches use combina-

tions of the three activation energies just dis-
cussed to describe thermal activation.

3.1 Dislocation Theory - Based
Model

At the higher temperatures arid lower stresses,
the well-established and prevailing mecha-

nism for creep is diffusion-assisted dislocation

climb [5], which evolves according to the rela-
tion

_ = me _ (6)

where

o o0 xo( )
is the lattice diffusion coefficient with Do

defining the frequency factor. This diffu-

sion coefficient uses Eqn. 3 as its expression

for the free energy. Here /_ is the elastic

shear modulus, Ac is the creep coefficient

for climb, b is the magnitude of the Burg-

ers vector, k is the Boltzmann constant (i.e.
k = 1.381 x 10 -:3 J/K), and n is the'power-

law creep exponent. The quantities a/_ and

kT/pb 3 are normalized variables for stress and

temperature.

At the intermediate temperatures and

higher stresses, obstacle-controlled dislocation

glide is the prominent mechanism controlling

creep [1, 5], which evolves according to the re-
lation

]
where Ag is the creep coefficient for glide. The
exponential in this expression is the probabil-

ity function for the occurrence of an equilib-
rium fluctuation associated with the stress-

dependent free energy of Eqn. 4. The pre-

exponential term, (or�p) 2, arises from the vari-
ation of mobile dislocation density with stress.

Except at low stress levels, the exponential

stress dependence dominates the flow behavior

of dislocation glide.

Following the simplified approach of NIX &:

ILSCHNER [17], the creep rate is taken to be

given by the sum

= _, + _9 (8)

which is analogous to the classical decompo-

sition of strain-rate into creep, i.e. re, and

plasticity, i.e. tg, contributions. However as

NIx et al. [17, 18] point out, this simple rela-

tion is not a very accurate representation for

creep; a better approach is to consider a cel-
lular model composed of hard and soft regions

of high and low dislocation densities, respec-

tively. We have begun the study of such a

model, but our results are preliminary to date

and are not ready to be reported on.

The ability of Eqns. 6 and 7, i.e. Eqn. 8,

to correlate experimental creep data for Cu
and LiF-22%CaF2 is illustrated in Figs. 3

and 4. From the vast wealth of copper data

that is present in the literature, data were

selected for four evenly spaced temperatures
where reported strain-rates can be found that

span nine to twelve decades. Contrary to cop-

per, only one data source is available for the
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Figure 3: Theoretical creep response of cop-
per. Data are from BARRETT _ SIIERBY [12],
ALDER t._ PHILLIPS [19], PAHUTOVA et al. [20]

and SAMANTA [21].

Figure 4: Theoretical creep response of

LiF-22%CaF2 hypereutectic salt. Data are

from RaJ & WHITTENBERGER [3].



LiF-22%CaF2 salt. The diffusion coefficient

used in Fig. 4 is for the diffusion of Ca +2 in
CaF2, i.e. Dca+_, as this appears to be the

diffusion process which governs the rate of dis-

location climb in LiF-22%CaF2 [3].

Values for the constants associated with

Eqns. 6 and 7, as represented in Figs. 3 and 4,

are given in Tables 1 and 2. The exponential

creep or glide response is temperature depen-

dent in these figures. This is because the creep
rate is normalized for dislocation climb (not

dislocation glide)in these figures:-This is true
for both the experimental data and the corre-

lations. The ability of Eqn. 7 to correlate these

data in the exponential creep domain may be

considered to be satisfactory, but it is certainly

not exceptional, especially for the salt. In par-

ticular, Eqn. 7 does not predict the correct

slope for the data given in Fig. 4. As we shall
now see, a phenomenological creep model does

a better job of correlating these same data.

3.2 Phenomenological Model

The phenomenological model for creep com-

bines GAROFALO'S [22] expression for stress

dependence with MILLER'S [8] expression for

temperature dependence. Here Eqn. 2 is given

by 1

1 This creep model is the basis upon whictr at least

two different viscoplastic models have been developed.

One is the model of MILLER [8]; the other is the model

of FREED ,_ V_'ALKER, which is published in these con-

ference proceedings.

where A is the creep coefficient, C is the

power-law breakdown stress, and

Tm>T>T,

(--Qe [ln(-_-) q-exp "_t

Tt kT>O

accounts for the thermal diffusivity. This for-

mulation uses Eqn. 3 at the higher tempera-

tures and Eqn. 5 at the lower temperatures
as expressions for the free energy. At stresses

less than power-law breakdown, Eqn. 9 re-

duces to a power-law expression like Eqn. 6;

whereas, for stresses greater than power-law

breakdown, Eqn. 9 becomes an exponential ex-

pression similar to Eqn. 7.

The correlative capability of this model is

demonstrated in Figs. 5 and 6 using the con-

stants given in Tables 1 and 2. The capa-

bility of t/8 vs. _ (found in Figs. 5 and 6) to
collapse the experimental data onto a master
curve with less scatter than one obtains with

tkT/Dl_b vs. _/I_ (found in Figs. 3 and 4) dis-

tinguishes the two approaches. This is partic-

ularly true in the domain of exponential creep,

and especially true for the LiF-22%CaF2 hy-

pereutectic salt. By not normalizing the stress
with the shear modulus, and by using 0 instead

of Dt_b/kT, data distributions with less scat-
ter are observed over the entire range of stress

(not just the range of power-law behavior).

We know of no physical explanation for

why the temperature-dependent free energy

expression of Eqn. 5 correlates experimental

creep data in the exponential domain better

than the stress-dependent free energy expres-

sion of Eqn. 4, but that seems to be the case.
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4 Summary

The capability of both stress and tempera-

ture dependent Gibbs free energies in corre-

lating exponential creep behavior has been

investigated. For polycrystalline copper and
a LiF-22%CaF2 hypereutectic salt, the phe-

nomenological, temperature-dependent, free

energy derived by MILLER [8] seems to do bet-
ter than the theoretical, stress-dependent, free

energy associated with obstacle-controlled dis-

location glide [1] in correlating experimental
data. The ability of a cellular model (such as

that proposed by NIx el al. [17, 18]) to corre-

late data of this type is being investigated.
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