558 research outputs found

    The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier-Jacobi Algebra

    Get PDF
    Lichnerowicz's algebra of differential geometric operators acting on symmetric tensors can be obtained from generalized geodesic motion of an observer carrying a complex tangent vector. This relation is based upon quantizing the classical evolution equations, and identifying wavefunctions with sections of the symmetric tensor bundle and Noether charges with geometric operators. In general curved spaces these operators obey a deformation of the Fourier-Jacobi Lie algebra of sp(2,R). These results have already been generalized by the authors to arbitrary tensor and spinor bundles using supersymmetric quantum mechanical models and have also been applied to the theory of higher spin particles. These Proceedings review these results in their simplest, symmetric tensor setting. New results on a novel and extremely useful reformulation of the rank 2 deformation of the Fourier-Jacobi Lie algebra in terms of an associative algebra are also presented. This new algebra was originally motivated by studies of operator orderings in enveloping algebras. It provides a new method that is superior in many respects to common techniques such as Weyl or normal ordering.Comment: This is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Contact Geometry and Quantum Mechanics

    Full text link
    We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental "phase-spacetime." We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.Comment: 7 pages, 1 figure, LaTeX, references added, journal versio

    Renormalized Volume

    Full text link
    We develop a universal distributional calculus for regulated volumes of metrics that are singular along hypersurfaces. When the hypersurface is a conformal infinity we give simple integrated distribution expressions for the divergences and anomaly of the regulated volume functional valid for any choice of regulator. For closed hypersurfaces or conformally compact geometries, methods from a previously developed boundary calculus for conformally compact manifolds can be applied to give explicit holographic formulae for the divergences and anomaly expressed as hypersurface integrals over local quantities (the method also extends to non-closed hypersurfaces). The resulting anomaly does not depend on any particular choice of regulator, while the regulator dependence of the divergences is precisely captured by these formulae. Conformal hypersurface invariants can be studied by demanding that the singular metric obey, smoothly and formally to a suitable order, a Yamabe type problem with boundary data along the conformal infinity. We prove that the volume anomaly for these singular Yamabe solutions is a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. Recently Graham proved that the first variation of the volume anomaly recovers the density obstructing smooth solutions to this singular Yamabe problem; we give a new proof of this result employing our boundary calculus. Physical applications of our results include studies of quantum corrections to entanglement entropies.Comment: 31 pages, LaTeX, 5 figures, anomaly formula generalized to any bulk geometry, improved discussion of hypersurfaces with boundar

    Conformal hypersurface geometry via a boundary Loewner-Nirenberg-Yamabe problem

    Full text link
    We develop a new approach to the conformal geometry of embedded hypersurfaces by treating them as conformal infinities of conformally compact manifolds. This involves the Loewner--Nirenberg-type problem of finding on the interior a metric that is both conformally compact and of constant scalar curvature. Our first result is an asymptotic solution to all orders. This involves log terms. We show that the coefficient of the first of these is a new hypersurface conformal invariant which generalises to higher dimensions the important Willmore invariant of embedded surfaces. We call this the obstruction density. For even dimensional hypersurfaces it is a fundamental curvature invariant. We make the latter notion precise and show that the obstruction density and the trace-free second fundamental form are, in a suitable sense, the only such invariants. We also show that this obstruction to smoothness is a scalar density analog of the Fefferman-Graham obstruction tensor for Poincare-Einstein metrics; in part this is achieved by exploiting Bernstein-Gel'fand-Gel'fand machinery. The solution to the constant scalar curvature problem provides a smooth hypersurface defining density determined canonically by the embedding up to the order of the obstruction. We give two key applications: the construction of conformal hypersurface invariants and the construction of conformal differential operators. In particular we present an infinite family of conformal powers of the Laplacian determined canonically by the conformal embedding. In general these depend non-trivially on the embedding and, in contrast to Graham-Jennes-Mason-Sparling operators intrinsic to even dimensional hypersurfaces, exist to all orders. These extrinsic conformal Laplacian powers determine an explicit holographic formula for the obstruction density.Comment: 37 pages, LaTeX, abridged version, functionals and explicit invariants from previous version treated in greater detail in another postin

    A continuous Wick rotation for spinor fields and supersymmetry in Euclidean space

    Get PDF
    We obtain a continuous Wick rotation for Dirac, Majorana and Weyl spinors ψexp(12θγ4γ5)ψ\psi \to \exp ({1\over 2} \theta \gamma^4 \gamma^5)\psi which interpolates between Minkowski and Euclidean field theories.Comment: Proceedings of the String conference held at Imperial College, London, July 1996. 9 pages, Late
    corecore