9 research outputs found

    Control of Patterns of Corneal Innervation by Pax6

    Get PDF
    PURPOSE: Corneal nerves play essential roles in maintaining the ocular surface through provision of neurotrophic support, but genetic control of corneal innervation is poorly understood. The possibility of a neurotrophic failure in ocular surface disease associated with heterozygosity at the Pax6 locus (aniridia-related keratopathy [ARK]) was investigated. METHODS: Patterns of corneal innervation were studied during development and aging in mice with different Pax6 dosages and in chimeras. Immunohistochemistry and ELISA-based assays were used to determine the molecular basis of defects seen in Pax6 mutants, and wound healing assays were performed. RESULTS: In adults, the Pax6(+/−) epithelium was less densely innervated than the wild-type epithelium, and radial projection of epithelial nerves was disrupted. Neurotrophic support of the corneal epithelium appeared normal. Directed nerve projection correlated with patterns of epithelial cell migration in adult wild-types, but innervation defects observed in Pax6(+/−) mice were not fully corrected in wound healing or chimeric models where directed epithelial migration was restored. CONCLUSIONS: Pax6 dosage nonautonomously controls robust directed radial projection of corneal neurons, and the guidance cues for growth cone guidance are not solely dependent on directed epithelial migration. There is little evidence that ARK represents neurotrophic keratitis

    Luminal Microbes Promote Monocyte-Stem Cell Interactions Across a Healthy Colonic Epithelium

    No full text
    The intestinal epithelium forms a vital barrier between luminal microbes and the underlying mucosal immune system. Epithelial barrier function is maintained by continuous renewal of the epithelium and is pivotal for gut homeostasis. Breaching of the barrier causes mobilization of immune cells to promote epithelial restitution. However, it is not known whether microbes at the luminal surface of a healthy epithelial barrier influence immune cell mobilization to modulate tissue homeostasis. Using a mouse colonic mucosal explant model, we demonstrate that close proximity of luminal microbes to a healthy, intact epithelium results in rapid mucus secretion and movement of Ly6C+7/4+ monocytes closer to epithelial stem cells. These early events are driven by the epithelial MyD88-signaling pathway and result in increased crypt cell proliferation and intestinal stem cell number. Over time, stem cell number and monocyte–crypt stem cell juxtapositioning return to homeostatic levels observed in vivo. We also demonstrate that reduced numbers of tissue Ly6C+ monocytes can suppress Lgr5EGFP+ stem cell expression in vivo and abrogate the response to luminal microbes ex vivo. The functional link between monocyte recruitment and increased crypt cell proliferation was further confirmed using a crypt–monocyte coculture model. This work demonstrates that the healthy gut epithelium mediates communication between luminal bacteria and monocytes, and monocytes can modulate crypt stem cell number and promote crypt cell proliferation to help maintain gut homeostasis

    Fluorescence Lifetime Measurements and Biological Imaging

    No full text
    corecore