1,055 research outputs found

    Orbital Degeneracy and Peierls Instability in Triangular Lattice Superconductor Ir1x_{1-x}Ptx_xTe2_2

    Full text link
    We have studied electronic structure of triangular lattice Ir1x_{1-x}Ptx_xTe2_2 superconductor using photoemission spectroscopy and model calculations. Ir 4f4f core-level photoemission spectra show that Ir 5d5d t2gt_{2g} charge modulation established in the low temperature phase of IrTe2_2 is suppressed by Pt doping. This observation indicates that the suppression of charge modulation is related to the emergence of superconductivity. Valence-band photoemission spectra of IrTe2_2 suggest that the Ir 5d5d charge modulation is accompanied by Ir 5d5d orbital reconstruction. Based on the photoemission results and model calculations, we argue that the orbitally-induced Peierls effect governs the charge and orbital instability in the Ir1x_{1-x}Ptx_xTe2_2.Comment: 5 pages,4 figure

    Ground State and Magnetization Process of the Mixture of Bond-Alternating and Uniform S=1/2 Antiferromagnetic Heisenberg Chains

    Get PDF
    The mixture of bond-alternating and uniform S=1/2 antiferromagnetic Heisenberg chains is investigated by the density matrix renormalization group method. The ground state magnetization curve is calculated and the exchange parameters are determined by fitting to the experimentally measured magnetization curve of \CuCl2x_{2x}Br2(1x)_{2(1-x)}(γ\gamma-pic)2_2. The low field behavior of the magnetization curve and low temperature behavior of the magnetic susceptibility are found to be sensitive to whether the bond-alternation pattern (parity) is fixed all over the sample or randomly distributed. The both quantities are compatible with the numerical results for the random parity model.Comment: 5 pages, 7 figures. Final and enlarged version accepted for publication in J. Phys. Soc. Jp

    Antiferromagnetic Heisenberg chains with bond alternation and quenched disorder

    Full text link
    We consider S=1/2 antiferromagnetic Heisenberg chains with alternating bonds and quenched disorder, which represents a theoretical model of the compound CuCl_{2x}Br_{2(1-x)}(\gamma-{pic})_2. Using a numerical implementation of the strong disorder renormalization group method we study the low-energy properties of the system as a function of the concentration, x, and the type of correlations in the disorder. For perfect correlation of disorder the system is in the random dimer (Griffiths) phase having a concentration dependent dynamical exponent. For weak or vanishing disorder correlations the system is in the random singlet phase, in which the dynamical exponent is formally infinity. We discuss consequences of our results for the experimentally measured low-temperature susceptibility of CuCl_{2x}Br_{2(1-x)}(\gamma-{pic})_2

    Osteoblastic lysosome plays a central role in mineralization

    Get PDF

    Ribonucleotide reductase inhibitors enhance cidofovir-induced apoptosis in EBV-positive nasopharyngeal carcinoma xenografts

    Get PDF
    金沢大学医学部附属病院耳鼻咽喉科In nasopharyngeal carcinoma (NPC), Epstein-Barr virus (EBV) infection is mainly latent, and the tumor cells contain episomal viral DNA. We have shown that the acyclic nucleoside phosphonate analog, cidofovir [(S)-1-(3-hydroxy-2- (phosphonylmethoxypropyl)cytosine] (HPMPC), inhibits growth of NPC xenografts in nude mice by causing apoptosis. The ribonucleotide reductase (RR) inhibitors, hydroxyurea and didox (3,4-dihydroxybenzohydroxamic acid), have been demonstrated to inhibit neoplastic growth and are used as antiviral and anticancer agents. Here we show that RR inhibitors enhance the antitumor effect of cidofovir in EBV-transformed epithelial cells. MTT assays indicate that hydroxyurea and didox enhance cidofovir-induced cell toxicity in NPC-KT cells, an EBV-positive epithelial cell line derived from NPC. The effect is due to enhancement of apoptosis through the caspase cascade as shown by pronounced cleavage of poly(ADP-ribose) polymerase. Finally, hydroxyurea strikingly enhanced the cidofovir-induced growth-inhibitory effect on NPC grown in athymic mice. The results suggest that RR inhibitors should enhance the antitumor effect of acyclic nucleoside phosphonate analogs on NPC. © 2005 Wiley-Liss, Inc

    Effect of IGF-I and PDGF administered in vivo on the expression of osteoblast-related genes in old rats

    Get PDF
    Abstract In order to establish the cellular basis for using growth factors as possible therapeutic agents for the age-dependent deficit in bone formation activity, we examined the individual and combined effects of IGF-I and/or plateletderived growth factor (PDGF) on the gene expression of osteoblast-related markers in male rats. The expression of osteoblast markers was examined in the femurs of adult and old rats following marrow ablation, which amplifies gene expression activity. The mRNA levels of collagen 1 (I) (COLI), alkaline phosphatase (AP), osteopontin (OP) and osteocalcin (OC) were significantly lower in the old as compared with the adult rats. To determine whether growth factors can abolish the agerelated deficits in mRNA expression in old bone, PDGF and/or IGF-I were infused directly into the right femur for 5 days following marrow ablation. The contralateral femur was infused with vehicle only and used as a control. PDGF stimulated the expression of OP mRNA in both adult and old rats, whereas COLI, AP and OC mRNAs were not affected. IGF-I infusion did not have a significant effect on mRNA expression in adult rats. In contrast, treatment with IGF-I significantly enhanced the mRNA levels of COLI, AP and OP in old rats. To examine whether the combination of both factors could affect the expression of osteoblast markers synergistically, PDGF and IGF-I were infused together. In adult bones, the combined treatment with PDGF and IGF-I caused a slight increase in the level of OP gene expression but no change in AP, OC or COLI genes. Although neither IGF-I nor PDGF alone was effective in stimulating the expression of OC, the combined treatment in old bones enhanced OC expression significantly. The expression of COLI, AP and OP was also stimulated, but the stimulation was no different from that of IGF-I alone. In PDGF plus IGF-I treatment with a high dose, no dose-response effects were observed. Within the limits of the present study, it is suggested that IGF-I and, to a much lesser extent, PDGF may partially restore the deficit in the expression of osteoblast markers in old bones, and that the combination of both factors is slightly better than IGF-I alone in stimulating OC expression

    Effect of Palm Oil Mill Sterilization Process on the Physicochemical Characteristics and Enzymatic Hydrolysis of Empty Fruit Bunch

    Get PDF
    Sterilization process of oil palm fruits by-product can be satisfactorily used as alternative degradation method in production of value-added products from Empty Fruit Bunch (EFB). It could be considered as an auto hydrolysis technique in the regular pre-treatment methods. Other studies on lignocelluloses showed that they increase the pore volume of the wood which increases the available surface area for the enzyme. Changes in structure and properties of the EFB cellulose caused by sterilization were investigated by x-ray diffractometry and enzymatic hydrolysis of cellulosic biomass for fermentable sugar production (glucose). The enzymatic hydrolysis results showed that the highest hydrolysis of 53.77±1.38% (g/g biomass) conversion was obtained in EFB after 72 h incubation with glucose production, (Yp/x) of 12.55±0.33 g L-1. The increase in Crystallinity Index (CrI) of sterilized biomass increased the yield of glucose (g L-1) up to 44.55% compared to Fresh Fruit Bunches (FFB) as a control. Results obtained appear to be commercial significance showing the potential of sterilization process in a palm oil mill as a zero cost pre-treatment for the effective utilization of empty fruit bunch biomass for value added production from the palm oil industry

    Epstein-Barr Virus latent membrane protein 1 induces Snail and epithelial–mesenchymal transition in metastatic nasopharyngeal carcinoma

    Get PDF
    Background:Epstein-Barr Virus (EBV)-associated nasopharyngeal carcinoma (NPC) is distinctive among head-and-neck cancers in its undifferentiated histopathology and highly metastatic character. We have recently investigated the involvement of epithelial–mesenchymal transition (EMT) in NPC. In a previous study, we found a close association of expression of LMP1, the principal EBV oncoprotein, with expression of Twist and induction of EMT.Methods:We analysed expression of Snail in 41 NPC tissues by immunohistochemistry. The role of Twist as well as Snail in EMT of NPC was investigated by using NP69SV40T human nasopharyngeal cells.Results:In NPC tissues, overexpression of Snail is associated with expression of LMP1 in carcinomatous cells. In addition, expression of Snail positively correlated with metastasis and independently correlated inversely with expression of E-cadherin. Expression of Twist had no association with expression of E-cadherin. Further, in a human nasopharyngeal cell line, LMP1 induces EMT and its associated cellular motility and invasiveness. Expression of Snail is induced by LMP1 in these cells, and small hairpin RNA (shRNA) to Snail reversed the cellular changes. By contrast, Twist did not produce EMT in these nasopharyngeal cells.Conclusions:This study strengthens the association of EMT with the metastatic behaviour of NPC. These results suggest that induction of Snail by the EBV oncoprotein LMP1 has a pivotal role in EMT in NPC

    Epstein-Barr Virus Latent Membrane Protein 1 Induces Cancer Stem/Progenitor-Like Cells in Nasopharyngeal Epithelial Cell Lines

    Get PDF
    Recent studies suggest the existence of cancer stem cells (CSC) and cancer progenitor cells (CPC), although strict definitions of neither CSC nor CPC have been developed. We have produced evidence that the principal oncoprotein of Epstein-Barr virus (EBV), latent membrane protein 1 (LMP1), which is associated with human malignancies, especially nasopharyngeal carcinoma (NPC), promotes tumor cell invasion and metastasis, as well as the epithelial-mesenchymal transition (EMT). However, whether LMP1 is involved in the development of CSC/CPC is still unclear. This study investigates whether the expression of EBV-LMP1 is related to the development of CSC/CPC. Analysis of cancer stem cell markers reveals that LMP1 induces the CD44high CD24low CSC/CPC-like phenotype as well as self-renewal abilities in LMP1-expressing epithelial cell lines. In addition, we show here that LMP1 induction in epithelial cells causes high tumorigenicity and rapid cellular proliferation. Furthermore, we found that LMP1 expression increased the expression of several CPC markers as well as producing increased levels of EMT markers. Our findings indicate that LMP1 can induce a CPC-like rather than a CSC-like phenotype in epithelial cells and suggest that LMP1-induced phenotypic changes contribute to the development of NPC
    corecore