13 research outputs found

    Methionine sulfoxide reductase B from Corynebacterium diphtheriae catalyzes sulfoxide reduction via an intramolecular disulfide cascade

    Get PDF
    Corynebacterium diphtheriae is a human pathogen that causes diphtheria. In response to immune system–induced oxidative stress, C. diphtheriae expresses antioxidant enzymes, among which are methionine sulfoxide reductase (Msr) enzymes, which are critical for bacterial survival in the face of oxidative stress. Although some aspects of the catalytic mechanism of the Msr enzymes have been reported, several details still await full elucidation. Here, we solved the solution structure of C. diphtheriae MsrB (Cd-MsrB) and unraveled its catalytic and oxidation-protection mechanisms. Cd-MsrB catalyzes methionine sulfoxide reduction involving three redox-active cysteines. Using NMR heteronuclear single-quantum coherence (HSQC) spectra, kinetics, biochemical assays, and MS analyses, we show that the conserved nucleophilic residue Cys122 is S-sulfenylated after substrate reduction, which is then resolved by a conserved cysteine, Cys66, or by the non-conserved residue Cys127. We noted that the overall structural changes during the disulfide cascade expose the Cys122–Cys66 disulfide to recycling through thioredoxin (Trx). In the presence of hydrogen peroxide, Cd-MsrB formed reversible intra- and intermolecular disulfides without losing its Cys-coordinated Zn2+, and only the non-conserved Cys127 reacted with the low-molecular-weight (LMW) thiol mycothiol, protecting it from overoxidation. In summary, our structure–function analyses reveal critical details of the Cd-MsrB catalytic mechanism, including a major structural rearrangement that primes the Cys122–Cys66 disulfide for Trx reduction and a reversible protection against excessive oxidation of the catalytic cysteines in Cd-MsrB through intra- and intermolecular disulfide formation and S-mycothiolation

    Hypocrates is a genetically encoded fluorescent biosensor for (pseudo)hypohalous acids and their derivatives

    Get PDF
    The lack of tools to monitor the dynamics of (pseudo)hypohalous acids in live cells and tissues hinders a better understanding of inflammatory processes. Here we present a fluorescent genetically encoded biosensor, Hypocrates, for the visualization of (pseudo)hypohalous acids and their derivatives. Hypocrates consists of a circularly permuted yellow fluorescent protein integrated into the structure of the transcription repressor NemR from Escherichia coli. We show that Hypocrates is ratiometric, reversible, and responds to its analytes in the 106 M-1s-1 range. Solving the Hypocrates X-ray structure provided insights into its sensing mechanism, allowing determination of the spatial organization in this circularly permuted fluorescent protein-based redox probe. We exemplify its applicability by imaging hypohalous stress in bacteria phagocytosed by primary neutrophils. Finally, we demonstrate that Hypocrates can be utilized in combination with HyPerRed for the simultaneous visualization of (pseudo)hypohalous acids and hydrogen peroxide dynamics in a zebrafish tail fin injury model

    Coupling of domain swapping to kinetic stability in a thioredoxin mutant

    No full text
    The thioredoxin (Trx) fold is a small monomeric domain that is ubiquitous in redox-active enzymes. Trxs are characterized by a typical WCGPC active-site sequence motif. A single active-site mutation of the tryptophan to an alanine in Staphylococcus aureus Trx converts the oxidized protein into a biologically inactive domain-swapped dimer. While the monomeric protein unfolds reversibly in a two-state manner, the oxidized dimeric form is kinetically stable and converts to the monomeric form upon refolding. After reduction, the half-life of the dimer decreases many orders of magnitude to ∼ 4.3 h, indicating that the active-site disulfide between Cys29§andCys{29}§ and Cys{32}$ is an important determinant for the kinetics of unfolding. We propose kinetic stability as a possible evolutionary strategy in the evolution of multimeric proteins from their monomeric ancestors by domain swapping, which, for this biologically inactive Trx mutant, turned out to be an evolutionary dead end

    NrdH-redoxin of Mycobacterium tuberculosis and Corynebacterium glutamicum dimerizes at high protein concentration and exclusively receives electrons from thioredoxin reductase.

    No full text
    NrdH-redoxins are small reductases with a high amino acid sequence similarity with glutaredoxins and mycoredoxins but with a thioredoxin-like activity. They function as the electron donor for class Ib ribonucleotide reductases, which convert ribonucleotides into deoxyribonucleotides. We solved the x-ray structure of oxidized NrdH-redoxin from Corynebacterium glutamicum (Cg) at 1.5 Å resolution. Based on this monomeric structure, we built a homology model of NrdH-redoxin from Mycobacterium tuberculosis (Mt). Both NrdH-redoxins have a typical thioredoxin fold with the active site CXXC motif located at the N terminus of the first α-helix. With size exclusion chromatography and small angle x-ray scattering, we show that Mt_NrdH-redoxin is a monomer in solution that has the tendency to form a non-swapped dimer at high protein concentration. Further, Cg_NrdH-redoxin and Mt_NrdH-redoxin catalytically reduce a disulfide with a specificity constant 1.9 × 10(6) and 5.6 × 10(6) m(−1) min(−1), respectively. They use a thiol-disulfide exchange mechanism with an N-terminal cysteine pK(a) lower than 6.5 for nucleophilic attack, whereas the pK(a) of the C-terminal cysteine is ∼10. They exclusively receive electrons from thioredoxin reductase (TrxR) and not from mycothiol, the low molecular weight thiol of actinomycetes. This specificity is shown in the structural model of the complex between NrdH-redoxin and TrxR, where the two surface-exposed phenylalanines of TrxR perfectly fit into the conserved hydrophobic pocket of the NrdH-redoxin. Moreover, nrdh gene deletion and disruption experiments seem to indicate that NrdH-redoxin is essential in C. glutamicum

    NrdH-redoxin of Mycobacterium tuberculosis and Corynebacterium glutamicum Dimerizes at High Protein Concentration and Exclusively Receives Electrons from Thioredoxin Reductase

    No full text
    NrdH-redoxins are small reductases with a high amino acid sequence similarity with glutaredoxins and mycoredoxins but with a thioredoxin-like activity. They function as the electron donor for class Ib ribonucleotide reductases, which convert ribonucleotides into deoxyribonucleotides. We solved the x-ray structure of oxidized NrdH-redoxin from Corynebacterium glutamicum (Cg) at 1.5 Å resolution. Based on this monomeric structure, we built a homology model of NrdH-redoxin from Mycobacterium tuberculosis (Mt). Both NrdH-redoxins have a typical thioredoxin fold with the active site CXXC motif located at the N terminus of the first α-helix. With size exclusion chromatography and small angle x-ray scattering, we show that Mt_NrdH-redoxin is a monomer in solution that has the tendency to form a non-swapped dimer at high protein concentration. Further, Cg_NrdH-redoxin and Mt_NrdH-redoxin catalytically reduce a disulfide with a specificity constant 1.9 × 10(6) and 5.6 × 10(6) M(-1) min(-1), respectively. They use a thiol-disulfide exchange mechanism with an N-terminal cysteine pKa lower than 6.5 for nucleophilic attack, whereas the pKa of the C-terminal cysteine is ~10. They exclusively receive electrons from thioredoxin reductase (TrxR) and not from mycothiol, the low molecular weight thiol of actinomycetes. This specificity is shown in the structural model of the complex between NrdH-redoxin and TrxR, where the two surface-exposed phenylalanines of TrxR perfectly fit into the conserved hydrophobic pocket of the NrdH-redoxin. Moreover, nrdh gene deletion and disruption experiments seem to indicate that NrdH-redoxin is essential in C. glutamicu

    Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites

    Full text link
    Hydrogen peroxide (H2O2) is an important messenger molecule for diverse cellular processes. H2O2 oxidizes proteinaceous cysteinyl thiols to sulfenic acid, also known as S-sulfenylation, thereby affecting the protein conformation and functionality. Although many proteins have been identified as S-sulfenylation targets in plants, site-specific mapping and quantification remain largely unexplored. By means of a peptide-centric chemoproteomics approach, we mapped 1,537 S-sulfenylated sites on more than 1,000 proteins in Arabidopsis thaliana cells. Proteins involved in RNA homeostasis and metabolism were identified as hotspots for S-sulfenylation. Moreover, S-sulfenylation frequently occurred on cysteines located at catalytic sites of enzymes or on cysteines involved in metal binding, hinting at a direct mode of action for redox regulation. Comparison of human and Arabidopsis S-sulfenylation datasets provided 155 conserved S-sulfenylated cysteines, including Cys181 of the Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE4 (AtMAPK4) that corresponds to Cys161 in the human MAPK1, which has been identified previously as being S-sulfenylated. We show that, by replacing Cys181 of recombinant AtMAPK4 by a redox-insensitive serine residue, the kinase activity decreased, indicating the importance of this noncatalytic cysteine for the kinase mechanism. Altogether, we quantitatively mapped the S-sulfenylated cysteines in Arabidopsis cells under H2O2 stress and thereby generated a comprehensive view on the S-sulfenylation landscape that will facilitate downstream plant redox studies. © 2019 National Academy of Sciences. All rights reserved
    corecore