10 research outputs found
Band edge evolution of transparent Zn M2III O4 (MIII=Co, Rh, Ir) spinels
ZnMIII
2 O4 (MIII = Co, Rh, Ir) spinels have been recently identified as promising p-type semiconductors for
transparent electronics. However, discrepancies exist in the literature regarding their fundamental optoelectronic
properties. In this paper, the electronic structures of these spinels are directly investigated using soft/hard x-ray
photoelectron and x-ray absorption spectroscopies in conjunction with density functional theory calculations.
In contrast to previous results, ZnCo2O4 is found to have a small electronic band gap with forbidden optical
transitions between the true band edges, allowing for both bipolar doping and high optical transparency.
Furthermore, increased d-d splitting combined with a concomitant lowering of Zn s/p conduction states is
found to result in a ZnCo2O4 (ZCO) < ZnRh2O4 (ZRO) â ZnIr2O4 (ZIO) band gap trend, finally resolving
long-standing discrepancies in the literature
Recommended from our members
Direct observation of delithiation as the origin of analog memristance in LixNbO2
The discovery of analog LixNbO2 memristors revealed a promising new memristive mechanism wherein the diffusion of Li+ rather than O2- ions enables precise control of the resistive states. However, directly correlating lithium concentration with changes to the electronic structure in active layers remains a challenge and is required to truly understand the underlying physics. Chemically delithiated single crystals of LiNbO2 present a model system for correlating lithium variation with spectroscopic signatures from operando soft x-ray spectroscopy studies of device active layers. Using electronic structure modeling of the x-ray spectroscopy of LixNbO2 single crystals, we demonstrate that the intrinsic memristive behavior in LixNbO2 active layers results from field-induced degenerate p-type doping. We show that electrical operation of LixNbO2-based memristors is viable even at marginal Li deficiency and that the analog memristive switching occurs well before the system is fully metallic. This study serves as a benchmark for material synthesis and characterization of future LixNbO2-based memristor devices and suggests that valence change switching is a scalable alternative that circumvents the electroforming typically required for filamentary-based memristors
Direct Observation of Electrostatically Driven Band Gap Renormalization in a Degenerate Perovskite Transparent Conducting Oxide
We have directly measured the band gap renormalization associated with the Moss-Burstein shift in the perovskite transparent conducting oxide (TCO), La-doped BaSnO_{3}, using hard x-ray photoelectron spectroscopy. We determine that the band gap renormalization is almost entirely associated with the evolution of the conduction band. Our experimental results are supported by hybrid density functional theory supercell calculations. We determine that unlike conventional TCOs where interactions with the dopant orbitals are important, the band gap renormalization in La-BaSnO_{3} is driven purely by electrostatic interactions
Electronic and transport properties of Li-doped NiO epitaxial thin films
NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. Understanding and improving its optical and transport properties have been of considerable interest. In this work, we have investigated the effect of Li doping on the electronic, optical and transport properties of NiO epitaxial thin films grown by pulsed laser deposition. We show that Li doping significantly increases the p-type conductivity of NiO, but all the films have relatively low room-temperature mobilities (<0.05 cm2 Vâ1 sâ1). The conduction mechanism is better described by small-polaron hoping model in the temperature range of 200 K < T < 330 K, and variable range hopping at T < 200 K. A combination of X-ray photoemission and O K-edge X-ray absorption spectroscopic investigations reveal that the Fermi level gradually shifts toward the valence band maximum (VBM) and a new hole state develops with Li doping. Both the VBM and hole states are composed of primarily Zhang-Rice bound states, which accounts for the small polaron character (low mobility) of hole conduction. Our work provides guidelines for the search for p-type oxide materials and device optimization
Electronic and transport properties of Li-doped NiO epitaxial thin films (vol 6, pg 2275, 2018)
Correction for âElectronic and transport properties of Li-doped NiO epitaxial thin filmsâ by J. Y. Zhang et al., J. Mater. Chem. C, 2018, 6, 2275â2282.</p
Accelerated optimization of transparent, amorphous zinc-tin-oxide thin films for optoelectronic applications
In the last decade, transparent amorphous oxide semiconductors (TAOS) have become an essential component of many electronics, from ultra high resolution displays to solar cells. However, these disordered oxides typically rely on expensive component metals like indium to provide sufficient charge carrier conduction, and their optoelectronic properties are not as predictable and well-described as those of traditional, crystalline semiconductors. Herein we report on our comprehensive study of the amorphous zinc-tin-oxide (a-ZTO) system for use as an indium-free, n-type TAOS. Using a combination of high-throughput co-deposition growth, high resolution spectral mapping, and atomistic calculations, we explain the development of disorder-related subgap states in SnO2-like a-ZTO and optical bandgap reduction in ZnO-like a-ZTO. In addition, we report on a composition-induced electronic and structural transition in ZnO-like a-ZTO resulting in an exceptionally high figure of merit, comparable to that of amorphous indium-gallium-zinc-oxide. Our results accelerate the development of a-ZTO and similar systems as indium-free TAOS materials
Recommended from our members
Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2
The metal-insulator transition of NbO2 is thought to be important for the functioning of recent niobium oxide-based memristor devices, and is often described as a Mott transition in these contexts. However, the actual transition mechanism remains unclear, as current devices actually employ electroformed NbOx that may be inherently different to crystalline NbO2. We report on our synchrotron x-ray spectroscopy and density-functional-theory study of crystalline, epitaxial NbO2 thin films grown by pulsed laser deposition and molecular beam epitaxy across the metal-insulator transition at âŒ810°C. The observed spectral changes reveal a second-order Peierls transition driven by a weakening of Nb dimerization without significant electron correlations, further supported by our density-functional-theory modeling. Our findings indicate that employing crystalline NbO2 as an active layer in memristor devices may facilitate analog control of the resistivity, whereby Joule-heating can modulate Nb-Nb dimer distance and consequently control the opening of a pseudogap
Recommended from our members
Direct observation of delithiation as the origin of analog memristance in LixNbO2
The discovery of analog LixNbO2 memristors revealed a promising new memristive mechanism wherein the diffusion of Li+ rather than O2- ions enables precise control of the resistive states. However, directly correlating lithium concentration with changes to the electronic structure in active layers remains a challenge and is required to truly understand the underlying physics. Chemically delithiated single crystals of LiNbO2 present a model system for correlating lithium variation with spectroscopic signatures from operando soft x-ray spectroscopy studies of device active layers. Using electronic structure modeling of the x-ray spectroscopy of LixNbO2 single crystals, we demonstrate that the intrinsic memristive behavior in LixNbO2 active layers results from field-induced degenerate p-type doping. We show that electrical operation of LixNbO2-based memristors is viable even at marginal Li deficiency and that the analog memristive switching occurs well before the system is fully metallic. This study serves as a benchmark for material synthesis and characterization of future LixNbO2-based memristor devices and suggests that valence change switching is a scalable alternative that circumvents the electroforming typically required for filamentary-based memristors
Self consistent hybrid functionals What we ve learned so far
These are exciting times for computational materials science. We are witnessing a wide spread availability of high performance computing facilities, a huge increase in accessible computational resources, and an accompanying development of new exchange correlation functionals within density functional theory. All this contributes to the establishment of density functional theory as an indispensable tool for materials science investigations in general. Here, we want to highlight some examples utilising a recently developed self consistent hybrid functional, proposed by Shimazaki and Asai J Chem Phys 130 164702, 2009 [3] and Skone et al. Phys Rev B 89 195112, 2014 [4] , allowing for the calculation of accurate material properties using a fully ab initio procedure. The obtained structural and electronic properties of a range of oxide semiconductors will be critically discussed with respect to experimental results, and pave the way towards open questions in the fiel