19 research outputs found

    Interaction networks of Weibel-Palade body regulators syntaxin-3 and syntaxin binding protein 5 in endothelial cells

    Get PDF
    The endothelium stores the hemostatic protein Von Willebrand factor (VWF) in endothelial storage organelles called Weibel-Palade bodies (WPBs). During maturation, WPBs recruit a complex of Rab GTPases and effectors that associate with components of the SNARE machinery that control WPB exocytosis. Recent genome wide association studies have found links between genetic variations in the SNAREs syntaxin-2 (STX2) and syntaxin binding protein 5 (STXBP5) and VWF plasma levels, suggesting a role for SNARE proteins in regulating VWF release. Moreover, we have previously identified the SNARE proteins syntaxin-3 and STXBP1 as regulators of WPB release. In this study we used an unbiased iterative interactomic approach to identify new components of the WPB exocytotic machinery. An interactome screen of syntaxin-3 identifies a number of SNAREs and SNARE associated proteins (STXBP2, STXBP5, SNAP23, NAPA and NSF). We show that the VAMP-like domain (VLD) of STXBP5 is indispensable for the interaction with SNARE proteins and this capacity of the VLD could be exploited to identify an extended set of novel endothelial SNARE interactors of STXBP5. In addition, an STXBP5 variant with an N436S substitution, which is linked to lower VWF plasma levels, does not show a difference in interactome when compared with WT STXBP5. Significance: The hemostatic protein Von Willebrand factor plays a pivotal role in vascular health: quantitative or qualitative deficiencies of VWF can lead to bleeding, while elevated levels of VWF are associated with increased risk of thrombosis. Tight regulation of VWF secretion from WPBs is therefore essential to maintain vascular homeostasis. We used an unbiased proteomic screen to identify new components of the regulatory machinery that controls WPB exocytosis. Our data expand the endothelial SNARE protein network and provide a set of novel candidate WPB regulators that may contribute to regulation of VWF plasma levels and vascular health

    Identification of the Cell-Surface Protease ADAM9 as an Entry Factor for Encephalomyocarditis Virus

    No full text
    Encephalomyocarditis virus (EMCV) is an animal pathogen and an important model organism, whose receptor requirements are poorly understood. Here, we employed a genome-wide haploid genetic screen to identify novel EMCV host factors. In addition to the previously described picornavirus receptors sialic acid and glycosaminoglycans, this screen unveiled important new host factors for EMCV. These factors include components of the fibroblast growth factor (FGF) signaling pathway, such as the potential receptors FGFR1 and ADAM9, a cell-surface metalloproteinase. By employing various knockout cells, we confirmed the importance of the identified host factors for EMCV infection. The largest reduction in infection efficiency was observed in cells lacking ADAM9. Pharmacological inhibition of the metalloproteinase activity of ADAM9 did not affect virus infection. Moreover, reconstitution of inactive ADAM9 in knockout cells restored susceptibility to EMCV, pointing to a proteinase-independent role of ADAM9 in mediating EMCV infection. Using neutralization assays with ADAM9-specific antiserum and soluble receptor proteins, we provided evidence for a role of ADAM9 in EMCV entry. Finally, binding assays showed that ADAM9 facilitates attachment of EMCV to the cell surface. Together, our findings reveal a role for ADAM9 as a novel receptor or cofactor for EMCV.IMPORTANCE EMCV is an animal pathogen that causes acute viral infections, usually myocarditis or encephalitis. It is thought to circulate mainly among rodents, from which it is occasionally transmitted to other animal species, including humans. EMCV causes fatal outbreaks of myocarditis and encephalitis in pig farms and zoos, making it an important veterinary pathogen. Although EMCV has been widely used as a model to study mechanisms of viral disease in mice, little is known about its entry mechanism. Here, we employ a haploid genetic screen for EMCV host factors and identify an essential role for ADAM9 in EMCV entry

    Intra-host emergence of an enterovirus A71 variant with enhanced PSGL1 usage and neurovirulence

    Get PDF
    Enterovirus A71 (EV-A71) is one of the main causative agents of hand-foot-and-mouth disease and is occasionally associated with severe neurological complications. EV-A71 pathophysiology is poorly understood due to the lack of small animal models that robustly support viral replication in relevant organs/tissues. Here, we show that adult severe combined immune-deficient (SCID) mice can serve as an EV-A71 infection model to study neurotropic determinants and viral tropism. Mice inoculated intraperitoneally with an EV-A71 clinical isolate had an initial infection of the lung compartment, followed by neuroinvasion and infection of (motor)neurons, resulting in slowly progressing paralysis of the limbs. We identified a substitution (V135I) in the capsid protein VP2 as a key requirement for neurotropism. This substitution was also present in a mouse-adapted variant, obtained by passaging the clinical isolate in the brain of one-day-old mice, and induced exclusive neuropathology and rapid paralysis, confirming its role in neurotropism. Finally, we showed that this residue enhances the capacity of EV-A71 to use mouse PSGL1 for viral entry. Our data reveal that EV-A71 initially disseminates to the lung and identify viral and host determinants that define the neurotropic character of EV-A71, pointing to a hitherto understudied role of PSGL1 in EV-A71 tropism and neuropathology.status: publishe

    Intra-host emergence of an enterovirus A71 variant with enhanced PSGL1 usage and neurovirulence

    No full text
    Enterovirus A71 (EV-A71) is one of the main causative agents of hand-foot-and-mouth disease and is occasionally associated with severe neurological complications. EV-A71 pathophysiology is poorly understood due to the lack of small animal models that robustly support viral replication in relevant organs/tissues. Here, we show that adult severe combined immune-deficient (SCID) mice can serve as an EV-A71 infection model to study neurotropic determinants and viral tropism. Mice inoculated intraperitoneally with an EV-A71 clinical isolate had an initial infection of the lung compartment, followed by neuroinvasion and infection of (motor)neurons, resulting in slowly progressing paralysis of the limbs. We identified a substitution (V135I) in the capsid protein VP2 as a key requirement for neurotropism. This substitution was also present in a mouse-adapted variant, obtained by passaging the clinical isolate in the brain of one-day-old mice, and induced exclusive neuropathology and rapid paralysis, confirming its role in neurotropism. Finally, we showed that this residue enhances the capacity of EV-A71 to use mouse PSGL1 for viral entry. Our data reveal that EV-A71 initially disseminates to the lung and identify viral and host determinants that define the neurotropic character of EV-A71, pointing to a hitherto understudied role of PSGL1 in EV-A71 tropism and neuropathology.status: publishe

    Intra-host emergence of an enterovirus A71 variant with enhanced PSGL1 usage and neurovirulence

    No full text
    Enterovirus A71 (EV-A71) is one of the main causative agents of hand-foot-and-mouth disease and is occasionally associated with severe neurological complications. EV-A71 pathophysiology is poorly understood due to the lack of small animal models that robustly support viral replication in relevant organs/tissues. Here, we show that adult severe combined immune-deficient (SCID) mice can serve as an EV-A71 infection model to study neurotropic determinants and viral tropism. Mice inoculated intraperitoneally with an EV-A71 clinical isolate had an initial infection of the lung compartment, followed by neuroinvasion and infection of (motor)neurons, resulting in slowly progressing paralysis of the limbs. We identified a substitution (V135I) in the capsid protein VP2 as a key requirement for neurotropism. This substitution was also present in a mouse-adapted variant, obtained by passaging the clinical isolate in the brain of one-day-old mice, and induced exclusive neuropathology and rapid paralysis, confirming its role in neurotropism. Finally, we showed that this residue enhances the capacity of EV-A71 to use mouse PSGL1 for viral entry. Our data reveal that EV-A71 initially disseminates to the lung and identify viral and host determinants that define the neurotropic character of EV-A71, pointing to a hitherto understudied role of PSGL1 in EV-A71 tropism and neuropathology

    Intra-host emergence of an enterovirus A71 variant with enhanced PSGL1 usage and neurovirulence

    No full text
    Enterovirus A71 (EV-A71) is one of the main causative agents of hand-foot-and-mouth disease and is occasionally associated with severe neurological complications. EV-A71 pathophysiology is poorly understood due to the lack of small animal models that robustly support viral replication in relevant organs/tissues. Here, we show that adult severe combined immune-deficient (SCID) mice can serve as an EV-A71 infection model to study neurotropic determinants and viral tropism. Mice inoculated intraperitoneally with an EV-A71 clinical isolate had an initial infection of the lung compartment, followed by neuroinvasion and infection of (motor)neurons, resulting in slowly progressing paralysis of the limbs. We identified a substitution (V135I) in the capsid protein VP2 as a key requirement for neurotropism. This substitution was also present in a mouse-adapted variant, obtained by passaging the clinical isolate in the brain of one-day-old mice, and induced exclusive neuropathology and rapid paralysis, confirming its role in neurotropism. Finally, we showed that this residue enhances the capacity of EV-A71 to use mouse PSGL1 for viral entry. Our data reveal that EV-A71 initially disseminates to the lung and identify viral and host determinants that define the neurotropic character of EV-A71, pointing to a hitherto understudied role of PSGL1 in EV-A71 tropism and neuropathology

    Essential role of enterovirus 2A protease in counteracting stress granule formation and the induction of type I interferon

    No full text
    Most viruses have acquired mechanisms to suppress antiviral IFN-α/β and stress responses. Enteroviruses actively counteract the induction of IFN-α/β gene transcription and stress granule (SG) formation, which are increasingly implicated as a platform for antiviral signaling, but the underlying mechanisms remain poorly understood. Both viral proteases (2Apro and 3Cpro) have been implicated to suppress these responses, but these conclusions predominantly rely on ectopic overexpression of viral proteases or addition of purified viral proteases to cell lysates. Here, we present a detailed and comprehensive comparison of the effect of individual enterovirus proteases on the formation of SGs and the induction of IFN-α/β gene expression in infected cells, for representative members of the enterovirus species EV-A to EV-D. First, we show that SG formation and IFN-β induction are suppressed in cells infected with EV-A71, CV-B3, CV-A21 and EV-D68. By introducing genes encoding CV-B3 proteases in a recombinant encephalomyocarditis virus (EMCV) that was designed to efficiently activate antiviral responses, we show that CV-B3 2Apro, but not 3Cpro, is the major antagonist that counters SG formation and IFN-β gene transcription, and that 2Apro's proteolytic activity is essential for both functions. 2Apro efficiently suppressed SG formation despite PKR activation and eIF2α phosphorylation, suggesting that 2Apro antagonizes SG assembly or promotes their disassembly. Finally, we show that the ability to suppress SG formation and IFN-β gene transcription is conserved in the 2Apro of EV-A71, CV-A21 and EV-D68. Collectively, our results indicate that enterovirus 2Apro plays a key role in inhibiting innate antiviral cellular responses.Importance Enteroviruses are important pathogens that can cause a variety of diseases in humans, including aseptic meningitis, myocarditis, hand-foot-and-mouth disease, conjunctivitis and acute flaccid paralysis. Like many other viruses, enteroviruses must counteract antiviral cellular responses to establish an infection. It has been suggested that enterovirus proteases cleave cellular factors to perturb antiviral pathways, but the exact contribution of viral proteases 2Apro and 3Cpro remains elusive. Here, we show that 2Apro, but not 3Cpro, of all four human EV species (EV-A to EV-D) inhibits SG formation and IFN-β gene transcription. Our observations suggest that enterovirus 2Apro has a conserved function in counteracting antiviral host responses, and thereby is the main enterovirus "security protein". Understanding the molecular mechanisms of enterovirus immune evasion strategies may help to develop countermeasures to control infections with these viruses

    Essential role of enterovirus 2A protease in counteracting stress granule formation and the induction of type I interferon

    No full text
    Most viruses have acquired mechanisms to suppress antiviral IFN-α/β and stress responses. Enteroviruses actively counteract the induction of IFN-α/β gene transcription and stress granule (SG) formation, which are increasingly implicated as a platform for antiviral signaling, but the underlying mechanisms remain poorly understood. Both viral proteases (2Apro and 3Cpro) have been implicated to suppress these responses, but these conclusions predominantly rely on ectopic overexpression of viral proteases or addition of purified viral proteases to cell lysates. Here, we present a detailed and comprehensive comparison of the effect of individual enterovirus proteases on the formation of SGs and the induction of IFN-α/β gene expression in infected cells, for representative members of the enterovirus species EV-A to EV-D. First, we show that SG formation and IFN-β induction are suppressed in cells infected with EV-A71, CV-B3, CV-A21 and EV-D68. By introducing genes encoding CV-B3 proteases in a recombinant encephalomyocarditis virus (EMCV) that was designed to efficiently activate antiviral responses, we show that CV-B3 2Apro, but not 3Cpro, is the major antagonist that counters SG formation and IFN-β gene transcription, and that 2Apro's proteolytic activity is essential for both functions. 2Apro efficiently suppressed SG formation despite PKR activation and eIF2α phosphorylation, suggesting that 2Apro antagonizes SG assembly or promotes their disassembly. Finally, we show that the ability to suppress SG formation and IFN-β gene transcription is conserved in the 2Apro of EV-A71, CV-A21 and EV-D68. Collectively, our results indicate that enterovirus 2Apro plays a key role in inhibiting innate antiviral cellular responses.Importance Enteroviruses are important pathogens that can cause a variety of diseases in humans, including aseptic meningitis, myocarditis, hand-foot-and-mouth disease, conjunctivitis and acute flaccid paralysis. Like many other viruses, enteroviruses must counteract antiviral cellular responses to establish an infection. It has been suggested that enterovirus proteases cleave cellular factors to perturb antiviral pathways, but the exact contribution of viral proteases 2Apro and 3Cpro remains elusive. Here, we show that 2Apro, but not 3Cpro, of all four human EV species (EV-A to EV-D) inhibits SG formation and IFN-β gene transcription. Our observations suggest that enterovirus 2Apro has a conserved function in counteracting antiviral host responses, and thereby is the main enterovirus "security protein". Understanding the molecular mechanisms of enterovirus immune evasion strategies may help to develop countermeasures to control infections with these viruses

    Identification of fukinolic acid from Cimicifuga heracleifolia and its derivatives as novel antiviral compounds against enterovirus A71 infection

    Get PDF
    Human enterovirus 71 (EV-A71) infections cause a wide array of diseases ranging from diarrhoea and rashes to hand-foot-and-mouth disease and, in rare cases, severe neurological disorders. No specific antiviral drug therapy is currently available. Extracts from seventy-five Chinese medicinal plants selected for antiviral activity based on the Chinese pharmacopeia and advice from traditional Chinese medicine clinicians were tested for activity against EV-A71. The aqueous extract of the rhizome of Cimicifuga heracleifolia (Sheng Ma) and Arnebia euchroma (Zi Cao) showed potent antiviral activity. The active fractions were isolated by bioassay-guided purification, and identified by a combination of high-resolution mass spectrometry and NMR. Fukinolic acid and cimicifugic acid A and J, were identified as active anti-EV-A71 compounds for Cimicifuga heracleifolia, whereas for Arnebia euchroma, two caffeic acid derivatives were tentatively deduced. Commercially available fukinolic acid analogues like L-chicoric acid and D-chicoric also showed in vitro micromolar activity against EV-A71 lab-strain and clinical isolates

    Identification of fukinolic acid from Cimicifuga heracleifolia and its derivatives as novel antiviral compounds against enterovirus A71 infection

    No full text
    Human enterovirus 71 (EV-A71) infections cause a wide array of diseases ranging from diarrhoea and rashes to hand-foot-and-mouth disease and, in rare cases, severe neurological disorders. No specific antiviral drug therapy is currently available. Extracts from seventy-five Chinese medicinal plants selected for antiviral activity based on the Chinese pharmacopeia and advice from traditional Chinese medicine clinicians were tested for activity against EV-A71. The aqueous extract of the rhizome of Cimicifuga heracleifolia (Sheng Ma) and Arnebia euchroma (Zi Cao) showed potent antiviral activity. The active fractions were isolated by bioassay-guided purification, and identified by a combination of high-resolution mass spectrometry and NMR. Fukinolic acid and cimicifugic acid A and J, were identified as active anti-EV-A71 compounds for Cimicifuga heracleifolia, whereas for Arnebia euchroma, two caffeic acid derivatives were tentatively deduced. Commercially available fukinolic acid analogues like L-chicoric acid and D-chicoric also showed in vitro micromolar activity against EV-A71 lab-strain and clinical isolates
    corecore