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ARTICLE INFO ABSTRACT

The endothelium stores the hemostatic protein Von Willebrand factor (VWF) in endothelial storage organelles
called Weibel-Palade bodies (WPBs). During maturation, WPBs recruit a complex of Rab GTPases and effectors
that associate with components of the SNARE machinery that control WPB exocytosis. Recent genome wide
association studies have found links between genetic variations in the SNAREs syntaxin-2 (STX2) and syntaxin
binding protein 5 (STXBP5) and VWF plasma levels, suggesting a role for SNARE proteins in regulating VWF
release. Moreover, we have previously identified the SNARE proteins syntaxin-3 and STXBP1 as regulators of
WPB release. In this study we used an unbiased iterative interactomic approach to identify new components of
the WPB exocytotic machinery. An interactome screen of syntaxin-3 identifies a number of SNAREs and SNARE
associated proteins (STXBP2, STXBP5, SNAP23, NAPA and NSF). We show that the VAMP-like domain (VLD) of
STXBP5 is indispensable for the interaction with SNARE proteins and this capacity of the VLD could be exploited
to identify an extended set of novel endothelial SNARE interactors of STXBP5. In addition, an STXBP5 variant
with an N436S substitution, which is linked to lower VWF plasma levels, does not show a difference in inter-
actome when compared with WT STXBPS5.

Significance: The hemostatic protein Von Willebrand factor plays a pivotal role in vascular health: quantitative
or qualitative deficiencies of VWF can lead to bleeding, while elevated levels of VWF are associated with in-
creased risk of thrombosis. Tight regulation of VWF secretion from WPBs is therefore essential to maintain
vascular homeostasis. We used an unbiased proteomic screen to identify new components of the regulatory
machinery that controls WPB exocytosis. Our data expand the endothelial SNARE protein network and provide a
set of novel candidate WPB regulators that may contribute to regulation of VWF plasma levels and vascular
health.
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1. Introduction maintenance of blood plasma levels of VWF through continuous, un-

stimulated release of WPBs via the basal secretion pathway [4,5]. Low

Endothelial cells (ECs) form the inner lining of the blood vessel and
actively participate hemostasis, inflammation and angiogenesis. Their
characteristic secretory vesicles, called Weibel-Palade bodies (WPBs),
store the hemostatic protein von Willebrand factor (VWF), along with a
set of inflammatory and angiogenic proteins [1-3]. The WPB content
can be released from ECs into the vascular lumen through exocytosis of
these vesicles. Tight regulation of WPB exocytosis is required for vas-
cular homeostasis and to enable a rapid response to vascular injury.
Under steady state conditions, endothelial cells are involved in the

circulating levels of VWF are associated with bleeding, such as in the
inherited bleeding disorder Von Willebrand Disease (VWD), while ele-
vated levels of VWF are linked to increased risk of thrombosis [6,7].
Upon vascular injury, however, VWF is quickly released to enable the
formation of a network of VWF strings to which platelets can bind,
eventually leading to platelet plug formation [8]. Along with VWF,
other storage components of WPBs are released which direct leukocyte
extravasation, such as P-selectin, CD63 and various chemokines, or
which control angiogenesis, such as Ang-2 and IGFBP7 [1].
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A large number of regulators of WPB trafficking and exocytosis has
previously been identified. Several Rabs and Rab effectors are recruited
during WPB maturation that direct trafficking and exocytosis, such as
Rab27A and Rab3 isoforms and their effectors Munc13-4, MyRIP and
Slp4-a [9-17]. WPB trafficking and content expulsion is further sup-
ported by actin, actin binding proteins and other regulators of the actin
cytoskeleton [18-22]. Another set of regulators of WPB exocytosis are
proteins of the soluble NSF attachment factor receptor (SNARE) family.
SNARE proteins form a molecular complex that positions two mem-
branes in close proximity while the mechanical force that is generated
during assembly overcomes the energy barrier that prevents sponta-
neous membrane fusion [23]. The core of a SNARE complex is formed
by the interaction of 4 alpha helices that are typically provided by 3 Q-
SNARE motifs on one membrane and an R-SNARE motif on the op-
posing membrane. SNARE proteins contribute to the specificity of
membrane fusion events and depending on the identity and the posi-
tioning of the SNAREs involved membrane fusion may occur between
organelles (homotypic or heterotypic), or between (secretory) orga-
nelles and the plasma membrane, such as in exocytosis. The exocytotic
SNARE complex is composed of a syntaxin (Qa) and a synaptosome
associated protein 25 (SNAP25) homologue (Qbc) on the target mem-
brane and a VAMP (R) on the secretory vesicle membrane [24]. The Q-
SNAREs syntaxin-2, -3 and -4 and SNAP23 [25-29], as well as the R-
SNAREs VAMP3 and VAMPS8 [30,31] have all been previously im-
plicated in WPB exocytotic processes. In addition, WPB release is
regulated by STXBP1 and STXBP3 [28,32], proteins of the STXBP/
SEC1/unc-18 family which in most but not all cases promote fusogenic
SNARE complex formation through binding to syntaxins [33]. STXBP5
is an inhibitor of endothelial VWF release in mice and men [34] and its
in vivo relevance is further underscored by human genetic poly-
morphisms in STXBP5 that are linked to VWF plasma levels, incidence
of venous thrombosis and bleeding severity in VWD patients
[25,26,35-40].

Despite the extensive (but possibly not all-encompassing) list of
regulators that can be part of the WPB secretory complex, the me-
chanisms that control secretory processes in endothelial cells remain
poorly defined. Due to our fragmented understanding of the links that
are made between different components of the WPB SNARE machinery,
the composition of the SNARE complex(es) that operate(s) during WPB
release is currently unclear. In this study, we set out to map the SNARE
interaction network involved in WPB release by performing an un-
biased screen of the interactomes of two recently identified determi-
nants of WPB exocytosis, syntaxin-3 and STXBP5. We first explored the
interactome of syntaxin-3 and identified among its endothelial protein-
protein interaction partners a number of SNARE proteins, including
STXBP2 and STXBP5. A subsequent interactomic analysis of STXBP5
and a set of STXBP5 truncation variants identified a large number of
additional Q-SNAREs, the interaction of which was dependent on the
carboxyterminal VAMP-like domain (VLD) of STXBP5. Taken together,
this shows that both syntaxin-3 and STXBP5 are part of a larger en-
dothelial SNARE network, the members of which are potential novel
regulators of WPB fusion events.

2. Materials and methods
2.1. Antibodies and reagents

Fetal calf serum (FCS) was from Bodinco (Alkmaar, Netherlands).
Trypsin, MS grade Halt protease and phosphatase inhibitors and Alexa
Fluor® 405/488/568/633/647-conjugated secondary antibodies were
from Thermo Fisher Scientific (Landsmeer, Netherlands). Primary an-
tibodies used in this study are shown in Supplementary Table 1.

2.2. DNA constructs

mEGFP-LIC, LVX-mEGFP-LIC and a lentiviral construct encoding
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mEGFP fused to the N-terminus of human syntaxin-3 (LVX-mEGFP-
STX3) have been described previously [13,27,32]. Oligonucleotide se-
quences of primers used in this study are shown in Supplementary
Table 2. For construction of mEGFP tagged to the N-terminus of human
full length STXBP5 (residue 1-1115) the STXBP5 coding sequence was
amplified with RBNLO17 and RBNLO18 using a human STXBP5 cDNA
clone (clone ID 8322460, Thermo Scientific) as template. For con-
struction of mEGFP-(STXBP5)VLD the VLD (1031-1115) was amplified
using RBNL171 and RBNLO18. For mEGFP-STXBPSAVLD (1 -1030) a
fragment was amplified using RBNLO17 and RBNL223. The PCR pro-
ducts were cloned in frame behind mEGFP in the mEGFP-LIC vector by
ligation independent cloning essentially as described [13]. An aspar-
agine to serine substitution at position 436 (N436S) corresponding to
the non-synonymous SNP rs1039084 [26] was introduced in mEGFP-
STXBP5 by PCR mutagenesis using RBNL138 and RBNL139. LVX-
mEGFP-STXBP5, LVX-mEGFP-STXBP5-N436S, LVX-mEGFP-(STXBP5)
VLD and LVX-mEGFP-STXBP5AVLD were constructed by insertion of
Ascl-Notl fragments from mEGFP-STXBP5 (3377 bp), mEGFP-STXBP5-
N436S (3377 bp), mEGFP-(STXBP5)VLD (290bp) or mEGFP-
STXBP5AVLD (3122 bp), respectively between the AscI and NotI site of
LVX-mEGFP-LIC. All constructs were verified by sequence analysis. A
schematic overview of all constructs is shown in Fig. 1.

2.3. Cell culture and lentiviral transduction

Pooled, cryo-preserved primary human umbilical vein endothelial
cells (HUVECs) were obtained from Promocell (Heidelberg, Germany)
and were cultured as described [32]. HUVECs were cultured in EGM-2
medium (Lonza, Basel, Switzerland) supplemented with 18% FCS
(EGM-18) [32]. HEK293T cells were obtained from ATCC (Wessel,
Germany) and were grown in Dulbecco's modified Eagle medium con-
taining p-glucose, L-glutamine, and pyruvate (Life Technologies, Bleis-
wijk, The Netherlands) supplemented with 10% FCS, 100 U/m peni-
cillin, and 100 mg/ml streptomycin. Lentivirus was produced in
HEK293Ts using CaCl, mediated transfection of the lentiviral constructs
(described above) together with 3rd generation lentiviral packaging
plasmids pMD2.G, pRSV-REV and pMDLg/pRRE were purchased from
(Addgene, Cambridge, USA) essentially as described [41]. After 6-8 h
incubation, the medium was exchanged for EGM-18 and harvested
24-48h later. EGM-18 with virus was filtered through 0.45um pore
filters and virus was precipitated using polyethylene glycol 6000 and
then resuspended in fresh EGM-18 at a higher concentration. Passage 6
HUVECs were transduced when at 50-80% confluency with an em-
pirically determined amount of concentrated virus in culture medium
and transduced cells were selected by 48h incubation with 1 pg/ml
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Fig. 1. Overview of the syntaxin-3 (STX3) and syntaxin-binding protein 5
(STXBP5) based constructs used in this study. All constructs were mEGFP-
tagged at the N-terminus and mEGFP alone was used as a control. The con-
structs encode full length syntaxin-3 (mEGFP-STX3), full length wild-type
STXBP5 (mEGFP-STXBP5), C-terminally truncated STXBP5 lacking its VAMP-
like domain (VLD) (mEGFP-STXBP5AVLD), N-terminally truncated STXBP5
encoding the VLD alone (mEGFP-(STXBP5)VLD) and full length STXBP5 with
an asparagine to serine substitution at position 436 (mEGFP-STXBP5-N436S).
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puromycin for efficient expression of the mEGFP-tagged fusion pro-
teins.

2.4. Immunoblotting

Proteins were separated on a Novex NuPAGE 4-12% Bis-Tris gel
(ThermoFisher) and transferred onto a nitrocellulose membrane (iBlot
Transfer Stack, ThermoFisher). Membranes were blocked with Odyssey
blocking buffer (LI-COR Biosciences, Lincoln) and probed with primary
antibodies followed by IRDye-conjugated secondary antibodies. IRDye-
conjugated antibodies were visualized by LI-COR Odyssey Infrared
Imaging System (LI-COR Biosciences).

2.5. Immunoprecipitation

HUVECs expressing lentivirally transduced mEGFP-fusion proteins
were seeded in 3 separate wells on 6 well culture plates to enable in
triplicate sample preparation for pull-downs of each condition. After
3 days of confluency, cells were rinsed 2 in PBS and subsequently
lysed in mass spectrometry (MS) grade lysis buffer (10 mM Tris.HCIL
(pH 7.5), 150 mM NacCl, 0.5 mM EDTA, 0.5% NP40 (v/v)) supplemented
with Halt protease and phosphatase inhibitor cocktail (Thermo
Scientific). Lysates were centrifuged for 10 min at 16,000g and super-
natants were transferred to fresh tubes. Cleared lysates were incubated
with magnetic anti-GFP nanobody (nAb) beads or blocked control
(CTRL) beads (Allele Biotech, San Diego, USA) by rotation for 2h at
room temperature. For interactome analysis by MS, beads were col-
lected on a magnetic stand and were washed 3 times with wash buffer
(10 mM Tris.HCI (pH 7.5), 150 mM NaCl, 0.5 mM EDTA) supplemented
with Halt protease and phosphatase inhibitor cocktail (Thermo
Scientific) and two times with 1 ml PBS. Further sample preparation for
MS is described below. Alternatively, for analysis by immunoblotting,
beads were washed four times with lysis buffer. Co-immunoprecipitates
and lysates were analyzed by immunoblotting as described above.

2.6. Sample preparation for mass spectrometry analysis

Immunoprecipitated proteins were reduced on-bead in 1M urea
(Life technologies), 10 mM DTT (Thermo Scientific) in 100 mM TRIS-
HCI pH7.5 (Life technologies) for 20 min at 20 °C and alkylated with
50 mM iodoacetamide (Life technologies) for 10 min at 20 °C. Proteins
were detached from the GFP-nanobody beads by incubation with
250 ng MS-grade trypsin (Promega) for 2h at 20 °C. Beads were re-
moved and proteins were further digested for 16 h at 20 °C with 350 ng
MS-grade trypsin (Promega). Tryptic peptides were desalted and con-
centrated using Empore-C18 StageTips and eluted with 0.5% (v/v)
acetic acid, 80% (v/v) acetonitrile. Sample volume was reduced by
SpeedVac and supplemented with 2% acetonitrile, 0.1% TFA to a final
volume of 5pl. 3l of each sample was injected for MS analysis.

2.7. Mass spectrometry data acquisition

Tryptic peptides were separated by nanoscale C18 reverse phase
chromatography coupled on-line to an Orbitrap Fusion Lumos Tribrid
mass spectrometer (Thermo Scientific) via a nanoelectrospray ion
source (Nanospray Flex Ion Source, Thermo Scientific). Peptides were
loaded on a 20 cm 75-360 um inner-outer diameter fused silica emitter
(New Objective) packed in-house with ReproSil-Pur C18-AQ, 1.9 um
resin (Dr Maisch GmbH). The column was installed on a Dionex
Ultimate3000 RSLC nanoSystem (Thermo Scientific) using a MicroTee
union formatted for 360 um outer diameter columns (IDEX) and a liquid
junction. The spray voltage was set to 2.15kV. Buffer A was composed
of 0.5% acetic acid and buffer B of 0.5% acetic acid, 80% acetonitrile.
Peptides were loaded for 17 min at 300 nl/min at 5% buffer B, equili-
brated for 5min at 5% buffer B (17-22min) and eluted by increasing
buffer B from 5 to 28% (22-80 min) and 28-40% (80-85 min), followed
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by a 5min wash to 95% and a 5 min regeneration to 5%. Survey scans
of peptide precursors from 375 to 1500 m/z were performed at 240 K
resolution (at 200 m/z) with a 1 x 10° ion count target. Tandem MS
was performed by isolation with the quadrupole with isolation window
0.7, HCD fragmentation with normalized collision energy of 30, and
rapid scan MS analysis in the ion trap. The MS? ion count target was set
to 3 x 10* and the max injection time was 20 ms. Only those precursors
with charge state 2-7 were sampled for MS?. The dynamic exclusion
duration was set to 20 s with a 10 ppm tolerance around the selected
precursor and its isotopes. Monoisotopic precursor selection was turned
on. The instrument was run in top speed mode with 1 s cycles. All data
were acquired with Xcalibur software.

2.8. Data analysis and statistics

RAW mass spectrometry files were processed with MaxQuant
1.6.0.13 using the human Uniprot database (downloaded March 2017)
[42]. MaxQuant output tables were analyzed using R/Bioconductor
(version 3.4.3/3.6) ‘reverse’, ‘potential contaminants’ and ‘only iden-
tified by site’ peptides were filtered out and label free quantification
values were log, transformed [43]. Proteins with 100% valid values in
at least one experimental group were selected. Missing values were
imputed by normal distribution (width = 0.3, shift = 1.8), assuming
these proteins were close to the detection limit. Statistical analyses
were performed using moderated t-tests in the LIMMA package [44].
Protein interactor significance was determined with a smooth cutoff
based on the log, fold change and p-value representing a 5% FDR [45].
Proteins that were statistically significant both between mEGPF-“target
protein”/nAb beads versus mEGPF-“target protein”/CTRL beads and
versus mEGFP/nAb beads were considered high confidence interactors.
The .raw MS files and search/identification files obtained with Max-
Quant have been deposited in the ProteomeXchange Consortium via the
PRIDE partner repository with the dataset identifier PXD012809 [46].

Interaction networks were visualized in Cytoscape v3.6.1 and
compared to previously identified interactions of human syntaxin-3 and
STXBP5 imported from the BioGrid database [47].

3. Results
3.1. Syntaxin-3 interacts with several SNAREs and related proteins

The WPB regulating Qa-SNARE was initially identified together
with STXBP1 in a proteomic screen for interactors of Slp4-a [32] and we
have subsequently shown that syntaxin-3 forms SNARE complexes that
contain the Qbc-SNARE SNAP23 together with R-SNAREs VAMPS or (to
a lesser extent) VAMP3, respectively [27]. In endothelial cells syntaxin-
3 is found on WPBs and also on endosomes [27], which most probably
reflects the fact that syntaxin-3, like many other SNARE proteins,
continuously recycles through the endocytic pathway after having
taken part in a membrane fusion event. To identify additional (reg-
ulatory) components of the WPB exocytotic machinery, we used an
unbiased affinity purification-mass spectrometry (AP-MS) based ap-
proach using ectopic expression of epitope-tagged baits in endothelial
cells. We anticipate that apart from SNARE proteins this unbiased ap-
proach will also identify interactors that associate with syntaxin-3
proximal or distal from the exocytotic machinery, either during re-entry
from the plasma membrane after vesicle fusion or on its journey
through the endocytic pathway. We cannot rule out that such inter-
actors are indirectly relevant for secretion, for instance by correctly
targeting syntaxin-3 to WPBs. mEGFP-STX3 and mEGFP (Fig. 1) were
lentivirally expressed in HUVEC and immunoprecipitation (IP) of baits
and interacting factors was performed using magnetic beads covalently
coupled with anti-GFP nanobody (nAB) or blocked magnetic control
(CTRL) beads [27]. Purified protein complexes were analyzed by MS
(LC/MS-MS) after which two statistical filters were applied to exclude
(1) nonspecific binders of magnetic beads (mEGFP-STX3/nAb vs
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STX3 Syntaxin-3 13.65 12.08
NSF N-Ethylmaleimide Sensitive Factor 6.30 6.94
EML3 Echinoderm Microtubule Associated Protein Like 3 5.38 5.44
GLG1 Golgi Glycoprotein 1 7.21 5.09
STXBP2  Syntaxin Binding Protein 2 5.22 3.79
Sco1 Cytochrome C Oxidase Assembly Protein 3.58 3.26
TBK1 TANK Binding Kinase 1 3.19 3.18
NAPA NSF Attachment Protein Alpha 2.98 3.14
SNAP23  Synaptosome Associated Protein 23 4.18 3.00
CSNK1G1 Casein Kinase 1 Gamma 1 2.84 2.93
EIF4A2 Eukaryotic Translation Initiation Factor 4A2 2.94 2.89
STXBP5  Syntaxin Binding Protein 5 3.17 249
FRMD5 FERM Domain Containing 5 3.62 247
ATP5SL  Distal Membrane Arm Assembly Complex 2 1.95 2.04
AUP1 Lipid Droplet Regulating VLDL Assembly Factor 1.90 1.91
ABCF3 ATP Binding Cassette Subfamily F Member 3 1.85 1.68
CD93 CD93 Molecule 2.86 1.67
PKN3 Protein Kinase N3 4.76 -1.99
MP68 ATP Synthase Membrane Subunit 6.8PL -2.26 -3.60

mEGFP-STX3/CTRL) and (2) interactors of the mEGFP tag (mEGFP-
STX3/nAb vs. mEGFP/nAb) (Fig. 2A-B). We confirmed the presence of
our bait syntaxin-3 itself to be significantly more abundant in the
mEGFP-STX3/nAb samples compared to both controls (Fig. 2). A set of
high confidence interactors of syntaxin-3 was identified, including the
SNARE( —associated) proteins SNAP23, N-ethylmaleimide-sensitive
factor (NSF), NSF Attachment Protein Alpha (SNAP-a or NAPA),
STXBP2 and STXBP5 (Fig. 2C). Syntaxin-3 interactions with SNAP23,
STXBP2 and STXBP5 have previously been observed in human cells, as
reported in the BioGrid database [47]. STXBP2, which has not pre-
viously been implicated in endothelial secretory processes, is a reg-
ulator of platelet alpha- and dense granule secretion [48]. Interestingly,
mutations in STXBP2 cause familial hemophagocytic lymphohistiocy-
tosis type 5 (FHL5) and microvillous inclusion disease (MVID), the
latter of which is also associated with loss of function mutations in STX3
[49]. Additional high confidence interactors included two cytoskeleton
related proteins, FERM Domain Containing 5 (FRMD5) and Echinoderm
Microtubule Associated Protein Like 3 (EML3), which have not been
previously associated with syntaxin-3. Interestingly, golgi glycoprotein
1 (GLG1) and CD93, two transmembrane proteins that are involved in
leukocyte-endothelial adhesion, were also identified as syntaxin-3
partners. GLG1, one of the most prominent endothelial interactors of
syntaxin-3 from this screen (also Supplementary Fig. 1), is a ligand of
the endothelial adhesion molecule E-selectin and is primarily found on
leukocyte microvilli [50]. Both CD93 and GLG1 are cell surface mole-
cules that are recycled after endocytosis, which could mean these in-
teractions take place when syntaxin-3 arrives on the plasma membrane
after exocytosis, or after internalization when they coexist with

syntaxin-3 in endosomes. Altogether, we identified a large set high
confidence syntaxin-3 interactors, including several SNARE proteins,
which could be novel regulators of WPB trafficking and exocytosis.

3.2. The carboxyterminal VAMP-like domain of STXBP5 is sufficient and
indispensable for SNARE protein interaction

One SNARE associated hit from our syntaxin-3 interaction screen
was the syntaxin binding protein STXBP5. STXBP5 has been classified
as an R-SNARE protein because of its C-terminal VLD which contains an
R-SNARE motif that enables its binding to syntaxin-1 [51-53]. Two
recent reports have shown that STXBP5 regulates VWF release from
platelets and endothelial cells through interaction with, respectively,
syntaxin-11/SNAP23 and syntaxin-4/SNAP23 complexes [34,54],
which highlights STXBP5's promiscuity in Q-SNARE interactions. To
further focus on how STXBP5 partakes in endothelial SNARE-mediated
VWEF secretion a number of STXBP5 variants were designed with which
we addressed the role of the VLD in endothelial STXBP5-SNARE inter-
actions (Fig. 1). mEGFP-tagged full length STXBP5 (mEGFP-STXBP5),
an N-terminal variant lacking the carboxyterminal VLD (mEGFP-
STXBP5AVLD) and a variant comprised of the VLD alone (mEGFP-
(STXBP5)VLD) were expressed in HUVECs (Supplementary Fig. 2) and
we used a similar AP-MS based approach as described above to perform
an unbiased screen for high confidence interactors of these three
STXBP5 variants. A limited set of high confidence interactors was
identified for mEGFP-STXBP5 full length when compared to mEGFP,
which included the SNARE proteins, NSF, syntaxin-12 and NAPA
(Fig. 3A&E, Supplementary Fig. 3A). Notably, the truncated mEGFP-
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Fig. 3. Syntaxin-binding protein 5 (STXBP5) interacts with a number of SNAREs through its VAMP-like domain (VLD). mEGFP-tagged STXBP5 variants and mEGFP
(see schematic overview in Fig. 1) were expressed in HUVECs and immunoprecipitated using anti-GFP nanobody coupled beads. A-D) Volcano plots showing
differentially co-precipitated proteins when comparing mEGFP-STXBP5 (A), mEGFP-(STXBP5)VLD (B) or mEGFP-STXBP5AVLD (C) vs. mEGFP and mEGFP-
STXBP5AVLD vs. mEGFP-STXBP5 (D). The logarithmic fold-change (1ogFC) is shown on the x-axis and the logarithmic p-value (—1og10 (p-value)) is shown on the y-
axis. Significance cut-off line is based on an FDR of 5%. E-G) Table legends listing high confidence interactors of the STXBP5 variants that were significantly
differentiated in both control comparisons shown respectively in panels A-C of this figure (vs. mEGFP) and of Supplementary Fig. 3 (vs. CTRL). H) Table legend listing
significantly differentiated interactors when comparing mEGFP-STXBP5AVLD vs. mEGFP-STXBP5 (panel B) after filtering for significant(*) co-precipitators of either
mEGFP-STXBP5 (Supplementary Fig. 3) or mEGFP-STXBP5AVLD (Supplementary Fig. 3) vs. their corresponding blocked control beads (vs. CTRL). STXBP5 is
depicted in red and other SNARE complex and associated proteins are depicted in blue. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

STXBP5AVLD showed a complete loss of high confidence interactors,
including all SNAREs (Fig. 3C&G and Fig. 5B, Supplementary Fig. 3C).
Since the level of expression of the smaller mEGFP construct differs
from the larger mEGFP-STXBP5 and mEGFP-STXBP5AVLD constructs
(Fig. 4) this may have resulted in substantial differences between the
amount of bait present in our samples, which could have skewed the
outcome of our analysis. For this reason we also carried out a direct
comparison between the full length and AVLD constructs which were
expressed at similar levels. High confidence interactors were identified
by selecting co-precipitators that were (1) significantly more abundant
in co-precipitations of either of these constructs, and (2) also sig-
nificantly more abundant compared to their respective CTRL bead
condition (Fig. 3D&H and Supplementary Fig. 3A&C). In agreement
with the results from their separate analyses, the SNARE proteins NSF,
NAPA and syntaxin-12 were also identified as high confidence inter-
actors of mEGFP-STXBPS5 full length, while no specific interactors were
found for the N-terminal variant mEGFP-STXBP5AVLD. This implies
that the SNARE interactors of STXBP5 were exclusively supported by
the VLD domain. To further characterize the syntaxin binding capacity
of the VLD and possibly identify additional STXBP5 interactors, we also
mapped the interactors of the isolated VLD moiety (mEGFP-(STXBP5)

VLD; Fig. 3B&F, Supplementary Fig. 3B). This led to an extended list of
SNAREs(—related) interactors, including several syntaxins (syntaxin-4,
—7, —8 and —12), and other SNARE complex proteins (SNAP23,
SNAP29, NAPA and NSF). Furthermore we also identified the ER-Golgi
Secl/unc18 protein SCFD1 (also Slyl or STXBP1L2) [55] and a member
of the ER-associated NRZ tethering complex, NBAS/NAG, which reg-
ulates assembly of ER Q-SNAREs [56].

In contrast to most R-SNAREs and syntaxin-binding proteins, which
promote membrane fusion, STXBP5 has been shown to inhibit exocy-
tosis [57-64]. Cumulative evidence suggests that this inhibitory role for
STXBP5 is mediated by its capacity to bind to syntaxins through its
VLD, which competes with VAMPs during the formation of SNARE
complexes [61,65]. This raises the possibility that STXBP5 controls
VWEF plasma levels through inhibition of SNARE-mediated WPB fusion
by displacing VAMPs and sequestering syntaxins into non-fusogenic
dead ends. To test this we studied the interaction of STXBP5 variants
with syntaxin-2, -3, -4, and SNAP23, Q-SNARE proteins that are ex-
pressed in endothelial cells and which all have been previously related
to plasma VWF levels or regulation of WPB release [27-29,36]. In
agreement with the SNARE interaction data from our unbiased screens,
we found that full length STXBP5 interacts with all of these specific
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[CmEGFP-STXBP5 [
Iéene Protein logFC: vs. CTRL vs. mEGFP
STXBP5 Syntaxin binding protein 5 13.46 13.55
NSF N-Ethylmaleimide Sensitive Factor, Vesicle Fusing 4.65 4.68
STX12  Syntaxin 12 4.45 417
MSH3 DNA mismatch repair protein Msh3 3.04 3.05
NAPA NSF Attachment Protein Alpha 3.00 2.35
HEATR1 HEAT repeat-containing protein 1 -2.31 -2.21
F mEGFP-(STXBP5)VLD
Gene Protein logFC: vs.CTRL vs. mEGFP
STXBP5 Syntaxin binding protein 5 12.94 11.44
NSF N-Ethylmaleimide Sensitive Factor 8.52 8.51
STX12  Syntaxin 12 8.88 8.47
SNAP23 Synaptosome Associated Protein 23 5.27 5.65
STX7 Syntaxin 7 4.69 5.51
NAPA NSF Attachment Protein Alpha 585 488
STX4 Syntaxin-4 3.14 3.24
SNAP29 Synaptosome Associated Protein 29 3.03 3.12
NBAS Neuroblastoma Amplified Sequence 3.14 2.87
SCFD1  Sec1 Family Domain Containing 1 (STXBP1L2) 2.49 2.56
STX8 Syntaxin-8 2.00 2.36
POLR2E RNA Polymerase Il Subunit E -2.51 -2.31
KIF3C Kinesin Family Member 3C -4.11 -3.00
[MEGFP-STXBPSAVLD |
%ene Protein logFC: vs. CTRL vs. mEGFP
STXBPS5 Syntaxin binding protein 5 17.14 14.21
SYT11 Synaptotagmin 11 -2.04 -2.32
ATP5J ATP synthase-coupling factor 6 -2.22 -2.55
|-ll'\’PL37 Ribosomal Protein L37 -3.37 -3.27
_vs mEGFP-STXBP5[]
Gene _ Protein logFC: WT vs.CTRL AVLD vs. CTRL AVLD vs WT
PPFIBP2 PPFIA Binding Protein 2 3.14 0.11 -2.26
NAPA  NSF Attachment Protein Alpha 3.00 0.65 -2.54
EWSR1 EWS RNA Binding Protein 1 2.70 -1.16 -2.92
STX12  Syntaxin 12 445 -0.15 -3.91
NSF N-Ethylmaleimide Sensitive Factor 4.65 0.62 -4.11
Fig. 3. (continued)
1P SNARE targets, but the interaction is lost upon deletion of the VLD
mMEGFP-STXBPS (Fig. 4). In contrast, the VLD alone appeared to be sufficient for their
ECEE L H436S AVLD MLD binding. Altogether this has added several novel endothelial partners to
wB — nAb - nAb - nAb - nAb - nAb MW 8. 1708 P
3 L 185 the previously reported interactors of STXBP5 (Fig. 5A), which are
- L. — potential downstream targets in STXBP5-mediated VWF secretion.
3 115
GEP 3.3. The N436S point mutation does not lead to a change in interactome
= Our finding that the VLD moiety enables STXBP5 to engage in
i : r30 SNARE complex formation with all exocytotic Q-SNAREs that are re-
— levant in WPB release, suggests that interactions with these SNAREs are
- 26 at the basis of the inhibitory function of STXBP5 in VWF secretion from
Syntaxin-2 endothelial cells [34]. The minor allele of the common STXBP5 poly-

30

SNAP23

Fig. 4. Syntaxin-binding protein 5 (STXBP5) interacts with syntaxin-2, —3
and — 4 and SNAP23 through its VAMP-like domain (VLD). mEGFP-tagged
STXBP5 variants and mEGFP (see schematic overview in Fig. 1) were lentivi-
rally expressed in HUVEC and immunoprecipitated using anti-GFP nanobody
coupled beads (+) or blocked control beads (—). Immunoblots of lysates
(input) and co-immunoprecipitates (IP) were probed with anti-GFP, anti-
SNAP23, anti-syntaxin-2, anti-syntaxin-3, or anti-syntaxin-4. Molecular weight
(MW) marker bands are shown on the right.

morphism rs1039084 encodes for the non-synonymous point mutation
Asp436Ser (N436S), which is located in the N-terminal domain of
STXBP5, i.e. outside of the VLD. The N436S substitution has been
linked to lower plasma VWF levels, decreased incidence of venous
thrombosis and increased bleeding in female VWD patients [26,36,40],
a phenotype that was recapitulated in CRISPR/Cas9-engineered mice
carrying the orthologous human mutation (N437S) [66]. This means
the N4368S substitution potentiates the inhibitory action of STXBP5, as
was also observed in vitro [34], however, little is known about the
underpinning molecular mechanism. A possible scenario would involve
gain or loss of specific interactors that determine the efficacy of
STXBP5-mediated inhibition of SNARE complex formation. To in-
vestigate whether the substitution alters binding of STXBP5 with its
interaction partners, we used an mEGFP-tagged STXBP5 variant
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Fig. 5. Interaction networks of syntaxin binding
protein 5 and syntaxin-3 in endothelial cells. A)
Interaction network showing individual and shared
interactors of syntaxin binding protein 5 (STXBP5)
and syntaxin-3 (STX3). Dashed lines show newly
found interactions and solid lines show interactions

that have previously been identified in human cells
and were reported in the BioGRID database. For
STXBP5, SNAREs and associated proteins (blue) all

plasma interacted through the VAMP-like domain (VLD):

membrane

confirmed WPB r;gulators

carrying the N436S substitution (mnEGFP-STXBP5-N436S). We identi-
fied high confidence interactors using a similar AP-MS based approach
as described above. We observed a similar SNARE interaction pattern as
for wild-type STXBP5, with the addition of syntaxin-8, however it must
be noted that this interaction was just above the significance cut-off line
(Fig. 6A&C, Supplementary Fig. 3D). When directly comparing inter-
actors of mEGFP-STXBP5-N436S with mEGFP-STXBP5, no significantly
different SNARE proteins were identified (Fig. 6B&D, Supplementary
Fig. 3A&D). Targeted testing of the interaction of STXBP5-N436S with
WPB exocytotic SNAREs also did not show changes in WPB SNARE
interaction partners of this variant (Fig. 3). In conclusion, our findings
do not lend support to a model where the N436S substitution affects the
(SNARE) interaction capacity of STXBP5.

4. Discussion and conclusions

We used an unbiased interactomics approach to identify SNARE
protein regulatory interactions that are potentially involved in WPB
exocytosis. We identified a set of high confidence interactors of syn-
taxin-3 and STXBPS5 (Fig. 5A) that, together with previously established
links, provides the outline of a network of SNAREs and regulators that
control VWF secretion (Fig. 5B).

We previously identified syntaxin-3 as a positive regulator of VWF
release from endothelial cells that is localized on WPBs [27]. A

— 1
= @
-

nodes with a solid edge represent interactors that
coprecipitated with mEGPF-STXBP5 and nodes with
a dotted edge represent interactors that coprecipi-
cated with mEGFP-VLD only. B) Overview of pre-
viously and newly identified SNARE protein inter-
actions in endothelial cells. Proteins are classified as
confirmed or as potential regulators of WPB traf-
ficking and release. Colors indicate syntaxins (or-
ange), SNARE accessory proteins (red), VAMPs
(green), SNAPs (blue) and NSF (purple). (For inter-
pretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)

prominent hit from our interactomic screen of syntaxin-3 was STXBP5.
STXBP5, which is a central node in the WPB SNARE network, is gen-
erally an inhibitor of SNARE complex formation and exocytosis, in a
variety of neuroendocrine cells [57,65,67], and this also applies for
VWF secretion from endothelial cells [34]. However, STXBP5 was also
reported to promote exocytosis of granules from platelets [34,54]
suggesting that STXBP5 may exert pleiotropic effects in different cells.
The interaction between syntaxin-3 and STXBP5 in human cells has
previously been reported both in a large interaction screen of HA-FLAG
tagged proteins in HEK293 cells, as well as in a mechanistic study of the
function of endogenous STXBP5 in mast cells [68,69]. In the latter
study, an explanation is provided for the apparently contradictory
functions of STXBP5 in granule exocytosis. Madera-Salcedo and co-
workers show that in resting mast cells non-phosphorylated STXBP5
preferably binds syntaxin-4, which we also identified as endothelial
STXBP5 interactor, and prevents it from binding its cognate SNARE
partner. Upon stimulation of the mast cells STXBP5 becomes phos-
phorylated which promotes its binding to syntaxin-3, enabling syn-
taxin-4 to form a SNARE complex and facilitate exocytosis [69]. The
authors suggest that syntaxin-3 is not a direct facilitator of exocytosis,
but rather acts through sequestering of STXBP5. As STXBP5 has been
shown to have a preference for syntaxin-SNAP23 binding compared to
syntaxin alone, they also suggest that a relocation of SNAP23 from
syntaxin-4 to syntaxin-3 may occur simultaneously, such as previously
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Fig. 6. Syntaxin binding protein 5 (STXBP5) with
point mutation N436S has a similar interactome as
wild-type STXBP5. mEGFP-STXBP5 and mEGFP-
STXBP5-N436S (see schematic overview in Fig. 1)
were expressed in HUVECs and immunoprecipitated
using anti-GFP nanobody coupled beads. A-B) Vol-
cano plots showing differentially co-precipitated
proteins with mEGFP-STXBP5-N436S vs. mEGFP (A)
and mEGFP-STXBP5-N436S vs. mEGFP-STXBP5 (B).
The logarithmic fold-change (logFC) is shown on the
x-axis and the logarithmic p-value (—1loglO (p-
value)) is shown on the y-axis. Significance cut-off
line is based on an FDR of 5%. C) Table legend listing
high confidence interactors of STXBP5-N436S that
were significantly differentiated in both control
comparisons shown in panel A of this figure (vs.

0 0 mEGFP) and of Supplementary Fig. 3 (vs. CTRL). D)
gl IogoFC 10 Table legend listing significantly differentiated in-
c [MEGFP-STXBP5-N436S]] teractors when comparing mEGFP-STXBP5-N436S
Gene Protein logFC: vs. CTRL vs. mEGFP vs. mEGFP-STXBP5 (panel B) after filtering for sig-
STXBP5 Syntaxin binding protein 5 14.02 13.91 nificant(*) co-precipitators of either mEGFP-STXBP5
NSF N-Ethylmaleimide Sensitive Factor 4.47 4.94 (Supplementary Fig. 3A) or mEGFP-STXBP5-N436S
STX12  Syntaxin 12 440 437 (Supplementary Fig. 3D) v. ther coresponding
Do g ocked control beads (vs. . is de-
KIF5A Kinesin Family Mem be.r 5A 3.82 3.45 picted in red and other SNARE complex and asso-
NAPA NSF Attachment Protein Alpha 3.82 2.87 ciated proteins are depicted in blue. (For inter-
STX8 Syntaxin-8 2.07 2.07 pretation of the references to colour in this figure
KRAS  KRAS Proto-Oncogene, GTPase -1.73 -2.07 legend, the reader is referred to the web version of
CDKL5 Cyclin Dependent Kinase Like 5 -2.80 -2.90 this article.)
DPYSL2 Dihydropyrimidinase Like 2 -2.27 -3.02
NUP107 Nucleoporin 107 -3.49 -3.35
D EGFPSTXBPENA%6SI]vs. [ MEGFP-STXBPSL]
Gene Protein logFC: WT vs. CTRL N436S vs. CTRL N436S vs. WT
SMTN  Smoothelin 1.67 3.95 2.7
EWSR1 RNA-binding protein EWS 2.69 -0.22 -2.95

observed in adipocytes [70]. This would be in line with our observation
that STXBP5 interacts with SNAP23, however, in unstimulated en-
dothelial cells we already observe that syntaxin-3 can interact with both
STXBP5 and SNAP23. In agreement with this observation we previously
identified syntaxin-3 as a WPB-localized, positive regulator of VWF
release that forms SNARE complexes with VAMP8 and SNAP23 [27].
This suggests that syntaxin-3 directly promotes exocytosis of WPBs and
that its role in endothelial cells is not linked to sequestering of STXBP5
to allow for syntaxin-4 mediated WPB release. However, we cannot rule
out that a gradual redistribution of STXBP5 from syntaxin-4 to syntaxin-
3 (or between any of the other SNAREs that were identified in this
study) can fine tune the exocytotic response by giving more prominence
to specific SNARE assemblies. Future studies should reveal whether a
SNARE-switch controlled by the phosphorylation of STXBPS5 is involved
in stimulus-induced WPB release.

Our data show that the VLD or STXBP5 is required and sufficient for
interaction with multiple SNAREs. The VLD has initially been identified
as the minimal SNARE binding domain and was implicated in the in-
hibition of SNARE complex formation and exocytosis in cell free assays
[52,57,60,65,70]. Other studies, on the other hand, have suggested that
the N-terminal domain is also required for and capable of SNARE
binding, and it has been implicated in the oligomerization of SNARE
complexes. The N-terminal domain includes structural motifs called
WD40 repeats, which are generally known to function as binding
scaffolds that coordinate multi-protein complex assemblies [60,71]. In
neurons and neuroendocrine cells, for example, the N-terminus of
STXBP5 alone has been shown to be able to inhibit neurotransmitter
release [60,63,72]. Our data do not support a similar mechanism in
endothelial cells, as with the VLD alone we were able to pull down a
large set of SNARE interactors, whereas we did not identify any SNARE
interactors when a truncated N-terminal STXBP5 variant lacking the

VLD was used (Fig. 3&Fig. 4). It must be noted that most of the above
mentioned studies did not show direct binding of SNAREs to the
STXPB5 N-terminal domains, raising the possibility that these domains
may act as a regulator of SNARE binding to the VLD. The increased
number of SNAREs and SNARE regulators that were identified when we
used the VLD alone suggests that this moiety binds SNAREs more effi-
ciently on its own than when it's part of the full-length STXBP5. Al-
though we cannot rule out that difference in expression levels of our
bait proteins may have contributed to this, it could also have been
caused by an auto-inhibitory confirmation in which the N-terminal part
of STXBP5 prevents efficient SNARE binding to the VLD. It would be
interesting to investigate the potential regulatory role of these domains
in WPB exocytosis.

Several studies have shown a relation between SNP rs1039084,
which leads to a N436S substitution in the N-terminal domain of
STXBP5, and lower VWF levels in plasma [26,40]. The functional data
presented so far are consistent with a model in which this substitution
potentiates the inhibitory function of STXBP5 [34,66]. Hence, we hy-
pothesized that the N436S mutation may have an increased SNARE
inhibitory capacity through altered protein interaction properties,
especially since this mutation is located in one of the WD40 repeats. We
did not see any notable differences between the interactomes of STXBP5
and STXBP5-N436S. One explanation for this could be that our inter-
actomic studies were performed in resting cells and not under stimu-
lated conditions. Potentially, we could have missed activation depen-
dent differences between the interactomes of STXBP5 and STXBP5-
N436S. Data from a study in chromaffin cells suggested that the N-
terminal domain of STXBP5 can bind the Ca®>* sensor synaptotagmin 1,
while at the same time the VLD can bind the neuroendocrine SNAP23
homologue SNAP25 and syntaxin-1 in a Ca®>*-dependent manner [63].
In contrast, another study identified syntaxin-1, SNAP25 and
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synaptotagmin 1 as steady state interactors of STXBP5 in mouse sy-
naptosomes [73]. Synaptotagmin 1 is also expressed in endothelial cells
and binds STXBP5 in an activation-dependent manner [34], but the
functional importance of this interaction is still unclear. A recent study
has now shown that not synaptotagmin 1, but rather the WPB-localized
synaptotagmin 5 is the Ca®>* sensor that drives WPB exocytosis [74].
Whether a physical or functional link between synaptotagmin 5 and
STXBP5 is involved in WPB release remains to be determined.

In conclusion, our study provides a rough map of SNARE interac-
tions that can contribute to regulation of WPB exocytosis (Fig. 5B).
While some SNAREs may (also) be involved in other endothelial
membrane fusion events, we speculate that among the extended list of
SNARE and associated proteins a number of new regulators of WPB
release and/or genetic loci that determine VWF levels can be found. The
broad range of SNAREs that bind STXBP5 by virtue of its VLD suggests
that this protein represents a main switch that can regulate numerous
SNARE complex assemblies at the same time. Although additional
studies would be required, we speculate that STXBP5 acts as a brake on
membrane fusion events in resting endothelial cells, and that this brake
is relieved upon cellular activation.
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