25 research outputs found

    Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation

    Get PDF
    Cranial radiotherapy in children often leads to progressive cognitive decline. We have established a rodent model of irradiation-induced injury to the young brain. A single dose of 8 Gy was administered to the left hemisphere of postnatal day 10 (P10) mice. Harlequin (Hq) mice, carrying the hypomorphic apoptosis-inducing factor AIFHq mutation, express 60% less AIF at P10 and displayed significantly fewer dying cells in the subventricular zone (SVZ) 6 h after IR, compared with wild type (Wt) littermates. Irradiated cyclophilin A-deficient (CypA−/−) mice confirmed that CypA has an essential role in AIF-induced apoptosis after IR. Hq mice displayed no reduction in SVZ size 7 days after IR, whereas 48% of the SVZ was lost in Wt mice. The proliferation rate was lower in the SVZ of Hq mice. Cultured neural precursor cells from the SVZ of Hq mice displayed a slower proliferation rate and were more resistant to IR. IR preferentially kills proliferating cells, and the slower proliferation rate in the SVZ of Hq mice may, at least partly, explain the protective effect of the Hq mutation. Together, these results indicate that targeting AIF may provide a fruitful strategy for protection of normal brain tissue against the detrimental side effects of IR

    Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effect of neurotrophic factors in enhancing stroke-induced neurogenesis in the adult subventricular zone (SVZ) is limited by their poor blood-brain barrier (BBB) permeability.</p> <p>Intranasal administration is a noninvasive and valid method for delivery of neuropeptides into the brain, to bypass the BBB. We investigated the effect of treatment with intranasal transforming growth factor-β1 (TGF-β1) on neurogenesis in the adult mouse SVZ following focal ischemia. The modified Neurological Severity Scores (NSS) test was used to evaluate neurological function, and infarct volumes were determined from hematoxylin-stained sections. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) labeling was performed at 7 days after middle cerebral artery occlusion (MCAO). Immunohistochemistry was used to detect bromodeoxyuridine (BrdU) and neuron- or glia-specific markers for identifying neurogenesis in the SVZ at 7, 14, 21, 28 days after MCAO.</p> <p>Results</p> <p>Intranasal treatment of TGF-β1 shows significant improvement in neurological function and reduction of infarct volume compared with control animals. TGF-β1 treated mice had significantly less TUNEL-positive cells in the ipsilateral striatum than that in control groups. The number of BrdU-incorporated cells in the SVZ and striatum was significantly increased in the TGF-β1 treated group compared with control animals at each time point. In addition, numbers of BrdU- labeled cells coexpressed with the migrating neuroblast marker doublecortin (DCX) and the mature neuronal marker neuronal nuclei (NeuN) were significantly increased after intranasal delivery of TGF-β1, while only a few BrdU labeled cells co-stained with glial fibrillary acidic protein (GFAP).</p> <p>Conclusion</p> <p>Intranasal administration of TGF-β1 reduces infarct volume, improves functional recovery and enhances neurogenesis in mice after stroke. Intranasal TGF-β1 may have therapeutic potential for cerebrovascular disorders.</p

    Cell Lineage and Regional Identity of Cultured Spinal Cord Neural Stem Cells and Comparison to Brain-Derived Neural Stem Cells

    Get PDF
    Neural stem cells (NSCs) can be isolated from different regions of the central nervous system. There has been controversy whether regional differences amongst stem and progenitor cells are cell intrinsic and whether these differences are maintained during expansion in culture. The identification of inherent regional differences has important implications for the use of these cells in neural repair. Here, we compared NSCs derived from the spinal cord and embryonic cortex. We found that while cultured cortical and spinal cord derived NSCs respond similarly to mitogens and are equally neuronogenic, they retain and maintain through multiple passages gene expression patterns indicative of the region from which they were isolated (e.g Emx2 and HoxD10). Further microarray analysis identified 229 genes that were differentially expressed between cortical and spinal cord derived neurospheres, including many Hox genes, Nuclear receptors, Irx3, Pace4, Lhx2, Emx2 and Ntrk2. NSCs in the cortex express LeX. However, in the embryonic spinal cord there are two lineally related populations of NSCs: one that expresses LeX and one that does not. The LeX negative population contains few markers of regional identity but is able to generate LeX expressing NSCs that express markers of regional identity. LeX positive cells do not give rise to LeX-negative NSCs. These results demonstrate that while both embryonic cortical and spinal cord NSCs have similar self-renewal properties and multipotency, they retain aspects of regional identity, even when passaged long-term in vitro. Furthermore, there is a population of a LeX negative NSC that is present in neurospheres derived from the embryonic spinal cord but not the cortex

    Endocannabinoids and the brain immune system: new neurones at the horizon?

    Full text link
    Whereas, in most brain compartments, neuronal cell renewal during early life is replaced by synaptic plasticity and the potentiation of existing pathways and connections, neurogenesis in the hippocampus occurs throughout adulthood. Neuronal progenitor cells in the dentate gyrus of the hippocampus are thought to be the gatekeepers of memory. Neural progenitor cell proliferation and differentiation depends on their intrinsic properties and local environment and is down-regulated in conditions associated with brain inflammation. Conversely, newly-formed neurones can survive despite chronic inflammation and, moreover, specifically arise within an inflammatory environment. Since the endocannabinoid system controls immune responses via multiple cellular and molecular targets and influences cell proliferation, fate decision and cell survival in the central nervous system, we summarise how neurogenesis might be regulated by brain cannabinoids, either directly or indirectly via the immune system. This review presents clear evidence that the cannabinoid system influences adult neurogenesis. However, there is considerable variability with regard to the strain, model and methods utilised and therefore it is difficult to compare studies investigating the cannabinoid system. As a result, it remains far from clear exactly how endocannabinoids regulate neurogenesis

    Transcriptional Basis for the Inhibition of Neural Stem Cell Proliferation and Migration by the TGFβ-Family Member GDF11

    Get PDF
    Signalling through EGF, FGF and endocannabinoid (eCB) receptors promotes adult neurogenesis, and this can be modelled in culture using the Cor-1 neural stem cell line. In the present study we show that Cor-1 cells express a TGFβ receptor complex composed of the ActRIIB/ALK5 subunits and that a natural ligand for this receptor complex, GDF11, activates the canonical Smad2/3 signalling cascade and significantly alters the expression of ∼4700 gene transcripts within a few hours of treatment. Many of the transcripts regulated by GDF11 are also regulated by the EGF, FGF and eCB receptors and by the MAPK pathway – however, in general in the opposite direction. This can be explained to some extent by the observation that GDF11 inhibits expression of, and signalling through, the EGF receptor. GDF11 regulates expression of numerous cell-cycle genes and suppresses Cor-1 cell proliferation; interestingly we found down-regulation of Cyclin D2 rather than p27kip1 to be a good molecular correlate of this. GDF11 also inhibited the expression of numerous genes linked to cytoskeletal regulation including Fascin and LIM and SH3 domain protein 1 (LASP1) and this was associated with an inhibition of Cor-1 cell migration in a scratch wound assay. These data demonstrate GDF11 to be a master regulator of neural stem cell transcription that can suppress cell proliferation and migration by regulating the expression of numerous genes involved in both these processes, and by suppressing transcriptional responses to factors that normally promote proliferation and/or migration
    corecore