1,828 research outputs found

    An improved method for the measurement of mechanical properties of bone by nanoindentation

    Get PDF
    Nanoindentation is widely used to measure the mechanical properties of bio-tissues. However, viscoelastic effects during the nanoindentation are seldom considered rigorously, although they are in general very significant in bio-tissues. In this study, a recently developed method for correcting the viscoelastic effects during nanoindentation is applied to mice bone samples. This method is found to yield reliable elastic modulus and hardness results from forelimb and femur cortical bone samples of C57 BL/6N and ICR mice. The creep properties of the samples are also characterized by a novel procedure using nanoindentation. The measured mechanical properties correlate well with the calcium content of the bone samples. © 2007 Springer Science+Business Media, LLC.postprin

    Probabilistic segmentation of volume data for visualization using SOM-PNN classifier

    Get PDF
    We present a new probabilistic classifier, called SOM-PNN classifier, for volume data classification and visualization. The new classifier produces probabilistic classification with Bayesian confidence measure which is highly desirable in volume rendering. Based on the SOM map trained with a large training data set, our SOM-PNN classifier performs the probabilistic classification using the PNN algorithm. This combined use of SOM and PNN overcomes the shortcomings of the parametric methods, the nonparametric methods, and the SOM method. The proposed SOM-PNN classifier has been used to segment the CT sloth data and the 20 human MRI brain volumes resulting in much more informative 3D rendering with more details and less artifacts than other methods. Numerical comparisons demonstrate that the SOM-PNN classifier is a fast, accurate and probabilistic classifier for volume rendering.published_or_final_versio

    BCI-FES training system design and implementation for rehabilitation of stroke patients

    Get PDF
    Author name used in this publication: Kai-yu TongAuthor name used in this publication: Suk-tak ChanRefereed conference paper2007-2008 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Cerebral plasticity after subcortical stroke as revealed by cortico-muscular coherence

    Get PDF
    Author name used in this publication: Kai-Yu TongAuthor name used in this publication: Suk-Tak Chan2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Low-carbon development via greening global value chains:A case study of Belarus

    Get PDF
    The rise of global value chains (GCVs) has seen the transfer of carbon emissions embodied in every step of international trade. Building a coordinated, inclusive and green GCV can be an effective and efficient way to achieve carbon emissions mitigation targets for countries that participate highly in GCVs. In this paper, we first describe the energy consumption as well as the territorial and consumption-based carbon emissions of Belarus and its regions from 2010 to 2017. The results show that Belarus has a relatively clean energy structure with 75% of Belarus' energy consumption coming from imported natural gas. The 'chemical, rubber and plastic products' sector has expanded significantly over the past few years; its territorial-based emissions increased 10-fold from 2011 to 2014, with the 'food processing' sector displaying the largest increase in consumption-based emissions. An analysis of regional emissions accounts shows that there is significant regional heterogeneity in Belarus with Mogilev, Gomel and Vitebsk having more energy-intensive manufacturing industries. We then analysed the changes in Belarus' international trade as well as its emission impacts. The results show that Belarus has changed from a net carbon exporter in 2011 to a net carbon importer in 2014. Countries along the Belt and Road Initiative, such as Russia, China, Ukraine, Poland and Kazakhstan, are the main trading partners and carbon emission importers/exporters for Belarus. 'Construction' and 'chemical, rubber and plastic products' are two major emission-importing sectors in Belarus, while 'electricity' and 'ferrous metals' are the primary emission-exporting sectors. Possible low-carbon development pathways are discussed for Belarus through the perspectives of global supply and the value chain

    Multi-cancer early detection test sensitivity for cancers with and without current population-level screening options

    Get PDF
    There are four solid tumors with common screening options in the average-risk population aged 21 to 75 years (breast, cervical, colorectal, and, based on personalized risk assessment, prostate), but many cancers lack recommended population screening and are often detected at advanced stages when mortality is high. Blood-based multi-cancer early detection tests have the potential to improve cancer mortality through additional population screening. Reported here is a post-hoc analysis from the third Circulating Cell-free Genome Atlas substudy to examine multi-cancer early detection test performance in solid tumors with and without population screening recommendations and in hematologic malignancies. Participants with cancer in the third Circulating Cell-free Genome Atlas substudy analysis were split into three subgroups: solid screened tumors (breast, cervical, colorectal, prostate), solid unscreened tumors, and hematologic malignancies. In this post hoc analysis, sensitivity is reported for each subgroup across all ages and those aged â©Ÿ50 years overall, by cancer, and by clinical cancer stage. Aggregate sensitivity in the solid screened, solid unscreened, and hematologic malignancy subgroups was 34%, 66%, and 55% across all cancer stages, respectively; restricting to participants aged â©Ÿ50 years showed similar aggregate sensitivity. Aggregate sensitivity was 27%, 53%, and 60% across stages I to III, respectively. Within the solid unscreened subgroup, aggregate sensitivity was >75% in 8/18 cancers (44%) and >50% in 13/18 (72%). This multi-cancer early detection test detected cancer signals at high (>75%) sensitivity for multiple cancers without existing population screening recommendations, suggesting its potential to complement recommended screening programs. Clinical trial identifier: NCT02889978

    Identifying chemokines as therapeutic targets in renal disease: Lessons from antagonist studies and knockout mice

    Get PDF
    Chemokines, in concert with cytokines and adhesion molecules, play multiple roles in local and systemic immune responses. In the kidney, the temporal and spatial expression of chemokines correlates with local renal damage and accumulation of chemokine receptor-bearing leukocytes. Chemokines play important roles in leukocyte trafficking and blocking chemokines can effectively reduce renal leukocyte recruitment and subsequent renal damage. However, recent data indicate that blocking chemokine or chemokine receptor activity in renal disease may also exacerbate renal inflammation under certain conditions. An increasing amount of data indicates additional roles of chemokines in the regulation of innate and adaptive immune responses, which may adversively affect the outcome of interventional studies. This review summarizes available in vivo studies on the blockade of chemokines and chemokine receptors in kidney diseases, with a special focus on the therapeutic potential of anti-chemokine strategies, including potential side effects, in renal disease. Copyright (C) 2004 S. Karger AG, Basel

    Neurobiological mechanisms of TENS-induced analgesia

    Get PDF
    Pain inhibition by additional somatosensory input is the rationale for the widespread use of Transcutaneous Electrical Nerve Stimulation (TENS) to relieve pain. Two main types of TENS produce analgesia in animal models: high-frequency (~50–100 Hz) and low-intensity ‘conventional’ TENS, and low-frequency (~2–4 Hz) and highintensity ‘acupuncture-like’ TENS. However, TENS efficacy in human participants is debated, raising the question of whether the analgesic mechanisms identified in animal models are valid in humans. Here, we used a shamcontrolled experimental design to clarify the efficacy and the neurobiological effects of ‘conventional’ and ‘acupuncture-like’ TENS in 80 human volunteers. To test the analgesic effect of TENS we recorded the perceptual and brain responses elicited by radiant heat laser pulses that activate selectively Aή and C cutaneous nociceptors. To test whether TENS has a long-lasting effect on brain state we recorded spontaneous electrocortical oscillations. The analgesic effect of ‘conventional’ TENS was maximal when nociceptive stimuli were delivered homotopically, to the same hand that received the TENS. In contrast, ‘acupuncture-like’ TENS produced a spatially-diffuse analgesic effect, coupled with long-lasting changes both in the state of the primary sensorimotor cortex (S1/ M1) and in the functional connectivity between S1/M1 and the medial prefrontal cortex, a core region in the descending pain inhibitory system. These results demonstrate that ‘conventional’ and ‘acupuncture-like’ TENS have different analgesic effects, which are mediated by different neurobiological mechanisms

    Arc Discharge Synthesis and Photoluminescence of 3D Feather-like AlN Nanostructures

    Get PDF
    A complex three-dimensional (3D) feather-like AlN nanostructure was synthesized by a direct reaction of high-purity Al granules with nitrogen using an arc discharge method. By adjusting the discharge time, a coral-like nanostructure, which evolved from the feather-like nanostructure, has also been observed. The novel 3D feather-like AlN nanostructure has a hierarchical dendritic structure, which means that the angle between the trunk stem and its branch is always about 30° in any part of the structure. The fine branches on the surface of the feather-like nanostructure have shown a uniform fish scale shape, which are about 100 nm long, 10 nm thick and several tens of nanometers in width. An alternate growth model has been proposed to explain the novel nanostructure. The spectrum of the feather-like products shows a strong blue emission band centered at 438 nm (2.84 eV), which indicates their potential application as blue light-emitting diodes

    Principles of early human development and germ cell program from conserved model systems

    Get PDF
    Human primordial germ cells (hPGCs), the precursors of sperm and eggs, originate during week 2-3 of early postimplantation development(1). Using in vitro models of hPGC induction(2-4), recent studies suggest striking mechanistic differences in specification of human and mouse PGCs(5). This may partly be due to the divergence in their pluripotency networks, and early postimplantation development(6-8). Since early human embryos are inaccessible for direct studies, we considered alternatives, including porcine embryos that, as in humans, develop as bilaminar embryonic discs. Here we show that porcine PGCs (pPGCs) originate from the posterior pre-primitive streak competent epiblast by sequential upregulation of SOX17 and BLIMP1 in response to WNT and BMP signalling. Together with human and monkey in vitro models simulating peri-gastrulation development, we show conserved principles for epiblast development for competency for PGC fate, followed by initiation of the epigenetic program(9-11), regulated by a balanced SOX17–BLIMP1 gene dosage. Our combinatorial approach using human, porcine and monkey in vivo and in vitro models, provides synthetic insights on early human development
    • 

    corecore