17 research outputs found

    The Salmonella Mutagenicity Assay: The Stethoscope of Genetic Toxicology for the 21st Century

    Get PDF
    Objectives: According to the 2007 National Research Council report Toxicology for the Twenty-First Century, modern methods (e.g., "omics," in vitro assays, high-throughput testing, computational methods) will lead to the emergence of a new approach to toxicology. The Salmonella mammalian microsome mutagenicity assay has been central to the field of genetic toxicology since the 1970s. Here we document the paradigm shifts engendered by the assay, the validation and applications of the assay, and how the assay is a model for future in vitro toxicology assays. Data sources: We searched PubMed, Scopus, and Web of Knowledge using key words relevant to the Salmonella assay and additional genotoxicity assays. Data extraction: We merged the citations, removing duplicates, and categorized the papers by year and topic. Data synthesis: The Salmonella assay led to two paradigm shifts: that some carcinogens were mutagens and that some environmental samples (e.g., air, water, soil, food, combustion emissions) were mutagenic. Although there are > 10,000 publications on the Salmonella assay, covering tens of thousands of agents, data on even more agents probably exist in unpublished form, largely as proprietary studies by industry. The Salmonella assay is a model for the development of 21st century in vitro toxicology assays in terms of the establishment of standard procedures, ability to test various agents, transferability across laboratories, validation and testing, and structure-activity analysis. Conclusions: Similar to a stethoscope as a first-line, inexpensive tool in medicine, the Salmonella assay can serve a similar, indispensable role in the foreseeable future of 21st century toxicology

    The stereoisomers of 17α-[123I]iodovinyloestradiol and its 11α-methoxy derivative evaluated for their oestrogen receptor binding in human MCF-7 cells and rat uterus, and their distribution in immature rats

    No full text
    We studied the potential of both stereoisomers of 17-[123I]iodovinyloestradiol (E- andZ-[123I]IVE) and of 11-methoxy-17-[123I]iodovinyloestradiol (E-andZ-[123I]MIVE) as suitable radioligands for the imaging of oestrogen receptor(ER)-positive human breast tumours. The 17-[123I]iodovinyloestradiols were prepared stereospecifically by oxidative radio-iododestannylation of the corresponding 17-tri-n-butylstannylvi-nyloestradiol precursors. Competitive binding studies were performed in order to determine the relative binding affinity (RBA) of the unlabelled 17-iodovinyloes-tradiols for the ER in both human MCF-7 breast tumour cells and rat uterine tissue, compared with that of diethylstilboestrol (DES). Target tissue uptake, retention and uptake selectivity of their123I-labelled analogues were studied in immature female rats. All four 17-iodovi-nyloestradiols showed high affinity for the ER in human MCF-7 cells, as well as rat uterus. Their RBA for the ER showed the following order of decreasing potency: RBA of DES >Z-IVE >Z-MIVE >E-MIVE E-IVE. Neither of these 17-iodovinyloestradiols showed any significant binding to the sex hormone binding globulin in human plasma. The biodistribution studies showed ER-mediated uptake in the uterus, ovaries and pituitary, that ofE- andZ-[123I]MIVE being higher than that ofE- andZ-[123I]IVE. High target-to-non-target tissue uptake ratios, especially at longer periods after injection (up to 24 h), were exhibited by both isomers of [123I]MIVE. The uterus-to-blood uptake ratio was higher forE-[123I]MIVE. However, the uterus-to-fat uptake ratio appeared to be higher for theZ-isomer of [123I]MIVE, especially at 24 h after injection. Metabolic properties and temperature effects, which play a more important role in vivo, probably cause the discrepancies seen between in vitro and in vivo binding results. On the basis of their in vitro binding properties and in vivo distribution characteristics we conclude thatE- andZ-[123I]MIVE could be suitable radioligands for the diagnostic imaging of ER in human breast cancer. Therefore, further studies with these radioligands in mature normal and tumour-bearing rats are warranted
    corecore