989 research outputs found
Quantification of the contribution of cardiac and arterial remodeling to hypertension.
The study aim was to quantify the individual and combined contributions of both the arterial system and the heart to systolic blood pressure in hypertension. We assessed the parameters of a heart-arterial model for normotensive control subjects and hypertensive patients with left ventricular adaptation patterns classified as normal, concentric remodeling, concentric hypertrophy, or eccentric hypertrophy. The present simulations show that vascular stiffening alone increases the pulse pressure without increasing systolic blood pressure. It is only in combination with an increased peripheral resistance that arterial stiffening leads to systolic hypertension in concentric remodeling and concentric hypertrophy. The contribution of cardiac pump function to the increase in blood pressure depends on cardiac remodeling, hypertrophy, or both. In hypertensive patients with a normal left ventricle, the heart is responsible for 55% of the increase in systolic blood pressure. In concentric remodeling, concentric hypertrophy, and eccentric hypertrophy, the cardiac contribution to the increase in systolic blood pressure is 21%, 65%, and 108%, respectively. We conclude that along with arterial changes, cardiac remodeling and hypertrophy contribute to hypertension
From time-series to complex networks: Application to the cerebrovascular flow patterns in atrial fibrillation
A network-based approach is presented to investigate the cerebrovascular flow
patterns during atrial fibrillation (AF) with respect to normal sinus rhythm
(NSR). AF, the most common cardiac arrhythmia with faster and irregular
beating, has been recently and independently associated with the increased risk
of dementia. However, the underlying hemodynamic mechanisms relating the two
pathologies remain mainly undetermined so far; thus the contribution of
modeling and refined statistical tools is valuable. Pressure and flow rate
temporal series in NSR and AF are here evaluated along representative cerebral
sites (from carotid arteries to capillary brain circulation), exploiting
reliable artificially built signals recently obtained from an in silico
approach. The complex network analysis evidences, in a synthetic and original
way, a dramatic signal variation towards the distal/capillary cerebral regions
during AF, which has no counterpart in NSR conditions. At the large artery
level, networks obtained from both AF and NSR hemodynamic signals exhibit
elongated and chained features, which are typical of pseudo-periodic series.
These aspects are almost completely lost towards the microcirculation during
AF, where the networks are topologically more circular and present random-like
characteristics. As a consequence, all the physiological phenomena at
microcerebral level ruled by periodicity - such as regular perfusion, mean
pressure per beat, and average nutrient supply at cellular level - can be
strongly compromised, since the AF hemodynamic signals assume irregular
behaviour and random-like features. Through a powerful approach which is
complementary to the classical statistical tools, the present findings further
strengthen the potential link between AF hemodynamic and cognitive decline.Comment: 12 pages, 10 figure
On the Mechanics Underlying the Reservoir-Excess Separation in Systemic Arteries and their Implications for Pulse Wave Analysis
Several works have separated the pressure waveform p in systemic arteries into reservoir pr and excess pexc components, pĀ =Ā prĀ +Ā pexc, to improve pulse wave analysis, using windkessel models to calculate the reservoir pressure. However, the mechanics underlying this separation and the physical meaning of pr and pexc have not yet been established. They are studied here using the time-domain, inviscid and linear one-dimensional (1-D) equations of blood flow in elastic vessels. Solution of these equations in a distributed model of the 55 larger human arteries shows that pr calculated using a two-element windkessel model is space-independent and well approximated by the compliance-weighted space-average pressure of the arterial network. When arterial junctions are well-matched for the propagation of forward-travelling waves, pr calculated using a three-element windkessel model is space-dependent in systole and early diastole and is made of all the reflected waves originated at the terminal (peripheral) reflection sites, whereas pexc is the sum of the rest of the waves, which are obtained by propagating the left ventricular flow ejection without any peripheral reflection. In addition, new definitions of the reservoir and excess pressures from simultaneous pressure and flow measurements at an arbitrary location are proposed here. They provide valuable information for pulse wave analysis and overcome the limitations of the current two- and three-element windkessel models to calculate pr
Perspectives on novel therapeutic strategies for right heart failure in pulmonary arterial hypertension: lessons from the left heart
Right heart function is the main determinant of prognosis in pulmonary arterial hypertension (PAH). At present, no treatments are currently available that directly target the right ventricle, as we will demonstrate in this article. Meta-analysis of clinical trials in PAH revealed that current PAH medication seems to have limited cardiac-specific effects when analysed by the pump-function graph. Driven by the hypothesis that "left" and right heart failure might share important underlying pathophysiological mechanisms, we evaluated the clinical potential of left heart failure (LHF) therapies for PAH, based on currently available literature. As in LHF, the sympathetic nervous system and the renināangiotensionāaldosterone system are highly activated in PAH. From LHF we know that intervening in this process, e.g. by angiotensin-converting enzyme inhibition or Ī²-blockade, is beneficial in the long run. Therefore, these medications could be also beneficial in PAH. Furthermore, the incidence of sudden cardiac death in PAH could be reduced by implantable cardioverter-defibrillators. Finally, pilot studies have demonstrated that interventricular dyssynchrony, present at end-stage PAH, responded favourably to cardiac resynchronisation therapy as well. In conclusion, therapies for LHF might be relevant for PAH. However, before they can be implemented in PAH management, safety and efficacy should be evaluated first in well-designed clinical trials
Modeling the Instantaneous PressureāVolume Relation of the Left Ventricle: A Comparison of Six Models
Simulations are useful to study the heartās ability to generate flow and the interaction between contractility and loading conditions. The left ventricular pressureāvolume (PV) relation has been shown to be nonlinear, but it is unknown whether a linear model is accurate enough for simulations. Six models were fitted to the PV-data measured in five sheep and the estimated parameters were used to simulate PV-loops. Simulated and measured PV-loops were compared with the Akaike information criterion (AIC) and the Hamming distance, a measure for geometric shape similarity. The compared models were: a time-varying elastance model with fixed volume intercept (LinFix); a time-varying elastance model with varying volume intercept (LinFree); a Langewouterās pressure-dependent elasticity model (Langew); a sigmoidal model (Sigm); a time-varying elastance model with a systolic flow-dependent resistance (Shroff) and a model with a linear systolic and an exponential diastolic relation (Burkh). Overall, the best model is LinFree (lowest AIC), closely followed by Langew. The remaining models rank: Sigm, Shroff, LinFix and Burkh. If only the shape of the PV-loops is important, all models perform nearly identically (Hamming distance between 20 and 23%). For realistic simulation of the instantaneous PV-relation a linear model suffices
Recommended from our members
Sustaining Water Resources: Environmental and Economic Impact
Water is essential to human health and economic development due to its utilization in sanitation, agriculture, and energy. Supplying water to an expanding world population requires simultaneous consideration of multiple societal sectors competing for limited resources. Water conservation, supply augmentation, distribution, and treatment of contaminants must work in concert to ensure water sustainability. Water is linked to other sectors, and the quantity and quality of water resources are changing. The efficient use of water in agriculture, the largest user of water worldwide, via drip irrigation is described as is the use of energy-intensive reverse osmosis to supplement freshwater supplies. Efforts to manage watersheds and model their responses to severe weather events are discussed along with efforts to improve the predictability of their function. The regional competition for water resources impacts both energy and water supply reliability, which requires that nations balance both for sustainable economic development. The use of water and energy in the US is described which provides a lens through which to both rethink the interrelationship of water and energy as well as evaluate technological developments. Advances in nanotechnology are highlighted as one emerging technology. These results underscore the multifaceted nature of water sustainability, its interrelationship to energy and economic development, and the need to develop, manage and regulate water systems in a concerted manner
Simultaneous determination of wave speed and arrival time of reflected waves using the pressure-velocity loop
This is the post print version of the article. The official published version can be found at the link below.In a previous paper we demonstrated that the linear portion of the pressureāvelocity loop (PU-loop) corresponding to early systole could be used to calculate the local wave speed. In this paper we extend this work to show that determination of the time at which the PU-loop first deviates from linearity provides a convenient way to determine the arrival time of reflected waves (Tr). We also present a new technique using the PU-loop that allows for the determination of wave speed and Tr simultaneously. We measured pressure and flow in elastic tubes of different diameters, where a strong reflection site existed at known distances away form the measurement site. We also measured pressure and flow in the ascending aorta of 11 anaesthetised dogs where a strong reflection site was produced through total arterial occlusion at four different sites. Wave speed was determined from the initial slope of the PU-loop and Tr was determined using a new algorithm that detects the sampling point at which the initial linear part of the PU-loop deviates from linearity. The results of the new technique for detecting Tr were comparable to those determined using the foot-to-foot and wave intensity analysis methods. In elastic tubes Tr detected using the new algorithm was almost identical to that detected using wave intensity analysis and foot-to-foot methods with a maximum difference of 2%. Tr detected using the PU-loop in vivo highly correlated with that detected using wave intensity analysis (r 2 = 0.83, P < 0.001). We conclude that the new technique described in this paper offers a convenient and objective method for detecting Tr, and allows for the dynamic determination of wave speed and Tr, simultaneously
- ā¦