25,079 research outputs found
Local Hidden Variable Theories for Quantum States
While all bipartite pure entangled states violate some Bell inequality, the
relationship between entanglement and non-locality for mixed quantum states is
not well understood. We introduce a simple and efficient algorithmic approach
for the problem of constructing local hidden variable theories for quantum
states. The method is based on constructing a so-called symmetric
quasi-extension of the quantum state that gives rise to a local hidden variable
model with a certain number of settings for the observers Alice and Bob.Comment: 8 pages Revtex; v2 contains substantial changes, a strengthened main
theorem and more reference
Counterexample to an additivity conjecture for output purity of quantum channels
A conjecture arising naturally in the investigation of additivity of
classical information capacity of quantum channels states that the maximal
purity of outputs from a quantum channel, as measured by the p-norm, should be
multiplicative with respect to the tensor product of channels. We disprove this
conjecture for p>4.79. The same example (with p=infinity) also disproves a
conjecture for the multiplicativity of the injective norm of Hilbert space
tensor products.Comment: 3 pages, 3 figures, revte
NASA Lewis F100 engine testing
Two builds of an F100 engine model derivative (EMD) engine were evaluated for improvements in engine components and digital electronic engine control (DEEC) logic. Two DEEC flight logics were verified throughout the flight envelope in support of flight clearance for the F100 engine model derivative program (EMPD). A nozzle instability and a faster augmentor transient capability was investigated in support of the F-15 DEEC flight program. Off schedule coupled system mode fan flutter, DEEC nose-boom pressure correlation, DEEC station six pressure comparison, and a new fan inlet variable vane (CIVV) schedule are identified
A short impossibility proof of Quantum Bit Commitment
Bit commitment protocols, whose security is based on the laws of quantum
mechanics alone, are generally held to be impossible on the basis of a
concealment-bindingness tradeoff. A strengthened and explicit impossibility
proof has been given in: G. M. D'Ariano, D. Kretschmann, D. Schlingemann, and
R. F. Werner, Phys. Rev. A 76, 032328 (2007), in the Heisenberg picture and in
a C*-algebraic framework, considering all conceivable protocols in which both
classical and quantum information are exchanged. In the present paper we
provide a new impossibility proof in the Schrodinger picture, greatly
simplifying the classification of protocols and strategies using the
mathematical formulation in terms of quantum combs, with each single-party
strategy represented by a conditional comb. We prove that assuming a stronger
notion of concealment--worst-case over the classical information
histories--allows Alice's cheat to pass also the worst-case Bob's test. The
present approach allows us to restate the concealment-bindingness tradeoff in
terms of the continuity of dilations of probabilistic quantum combs with
respect to the comb-discriminability distance.Comment: 15 pages, revtex
Hot DQ White Dwarfs: Something Different
We present a detailed analysis of all the known Hot DQ white dwarfs in the
Fourth Data Release of the Sloan Digital Sky Survey (SDSS) recently found to
have carbon dominated atmospheres. Our spectroscopic and photometric analysis
reveals that these objects all have effective temperatures between ~18,000 and
24,000 K. The surface composition is found to be completely dominated by
carbon, as revealed by the absence of Hbeta and HeI 4471 lines (or
determination of trace amount in a few cases). We find that the surface gravity
of all objects but one seems to be ''normal'' and around log g = 8.0 while one
is likely near log g = 9.0. The presence of a weak magnetic field is directly
detected by spectropolarimetry in one object and is suspected in two others. We
propose that these strange stars could be cooled down versions of the weird
PG1159 star H1504+65 and form a new family of hydrogen and helium deficient
objects following the post-AGB phase. Finally, we present the results of full
nonadiabatic calculations dedicated specifically to each of the Hot DQ that
show that only SDSS J142625.70+575218.4 is expected to exhibit luminosity
variations. This result is in excellent agreement with recent observations by
Montgomery et al. who find that J142625.70+575218.4 is the only pulsator among
6 Hot DQ white dwarfs surveyed in February 2008.Comment: 33 pages, 7 figures, accepted for publication in Ap
- …