1,005 research outputs found
Columnar defects and vortex fluctuations in layered superconductors
We investigate fluctuations of Josephson-coupled pancake vortices in layered
superconductors in the presence of columnar defects. We study the
thermodynamics of a single pancake stack pinned by columnar defects and obtain
the temperature dependence of localization length, pinning energy and critical
current. We study the creep regime and compute the crossover current between
line-like creep and pancake-like creep motion. We find that columnar defects
effectively increase interlayer Josephson coupling by suppressing thermal
fluctuations of pancakes. This leads to an upward shift in the decoupling line
most pronounced around the matching field.Comment: 5 pages, REVTeX, no figure
Effects of columnar disorder on flux-lattice melting in high-temperature superconductors
The effect of columnar pins on the flux-lines melting transition in
high-temperature superconductors is studied using Path Integral Monte Carlo
simulations. We highlight the similarities and differences in the effects of
columnar disorder on the melting transition in YBaCuO
(YBCO) and the highly anisotropic BiSrCaCuO (BSCCO) at
magnetic fields such that the mean separation between flux-lines is smaller
than the penetration length. For pure systems, a first order transition from a
flux-line solid to a liquid phase is seen as the temperature is increased. When
adding columnar defects to the system, the transition temperature is not
affected in both materials as long as the strength of an individual columnar
defect (expressed as a flux-line defect interaction) is less than a certain
threshold for a given density of randomly distributed columnar pins. This
threshold strength is lower for YBCO than for BSCCO. For higher strengths the
transition line is shifted for both materials towards higher temperatures, and
the sharp jump in energy, characteristic of a first order transition, gives way
to a smoother and gradual rise of the energy, characteristic of a second order
transition. Also, when columnar defects are present, the vortex solid phase is
replaced by a pinned Bose glass phase and this is manifested by a marked
decrease in translational order and orientational order as measured by the
appropriate structure factors. For BSCCO, we report an unusual rise of the
translational order and the hexatic order just before the melting transition.
No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte
Universal properties for linelike melting of the vortex lattice
Using numerical results obtained within two models describing vortex matter
(interacting elastic lines (Bose model) and uniformly frustrated XY-model) we
establish universal properties of the melting transition within the linelike
regime. These properties, which are captured correctly by both models, include
the scaling of the melting temperature with anisotropy and magnetic field, the
effective line tension of vortices in the liquid regime, the latent heat, the
entropy jump per entanglement length, and relative jump of Josephson energy at
the transition as compared to the latent heat. The universal properties can
serve as experimental fingerprints of the linelike regime of melting.
Comparison of the models allows us to establish boundaries of the linelike
regime in temperature and magnetic field.Comment: Revtex, 12 pages, 2 EPS figure
Recent developments in planet migration theory
Planetary migration is the process by which a forming planet undergoes a
drift of its semi-major axis caused by the tidal interaction with its parent
protoplanetary disc. One of the key quantities to assess the migration of
embedded planets is the tidal torque between the disc and planet, which has two
components: the Lindblad torque and the corotation torque. We review the latest
results on both torque components for planets on circular orbits, with a
special emphasis on the various processes that give rise to additional, large
components of the corotation torque, and those contributing to the saturation
of this torque. These additional components of the corotation torque could help
address the shortcomings that have recently been exposed by models of planet
population syntheses. We also review recent results concerning the migration of
giant planets that carve gaps in the disc (type II migration) and the migration
of sub-giant planets that open partial gaps in massive discs (type III
migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal
effects in Astronomy and Astrophysics", Lecture Notes in Physic
Coherent Radio Pulses From GEANT Generated Electromagnetic Showers In Ice
Radio Cherenkov radiation is arguably the most efficient mechanism for
detecting showers from ultra-high energy particles of 1 PeV and above. Showers
occuring in Antarctic ice should be detectable at distances up to 1 km. We
report on electromagnetic shower development in ice using a GEANT Monte Carlo
simulation. We have studied energy deposition by shower particles and
determined shower parameters for several different media, finding agreement
with published results where available. We also report on radio pulse emission
from the charged particles in the shower, focusing on coherent emission at the
Cherenkov angle. Previous work has focused on frequencies in the 100 MHz to 1
GHz range. Surprisingly, we find that the coherence regime extends up to tens
of Ghz. This may have substantial impact on future radio-based neutrino
detection experiments as well as any test beam experiment which seeks to
measure coherent Cherenkov radiation from an electromagnetic shower. Our study
is particularly important for the RICE experiment at the South Pole.Comment: 44 pages, 29 figures. Minor changes made, reference added, accepted
for publication in Phys. Rev.
Recommended from our members
Quantitative plant proteomics using hydroponic isotope labeling of entire plants (HILEP)
Tunneling Time Distribution by means of Nelson's Quantum Mechanics and Wave-Particle Duality
We calculate a tunneling time distribution by means of Nelson's quantum
mechanics and investigate its statistical properties. The relationship between
the average and deviation of tunneling time suggests the exsistence of
``wave-particle duality'' in the tunneling phenomena.Comment: 14 pages including 11 figures, the text has been revise
Vortex dynamics and states of artificially layered superconducting films with correlated defects
Linear resistances and -characteristics have been measured over a wide
range in the parameter space of the mixed phase of multilayered a-TaGe/Ge
films. Three films with varying interlayer coupling and correlated defects
oriented at an angle from the film normal were investigated.
Experimental data were analyzed within vortex glass models and a second order
phase transition from a resistive vortex liquid to a pinned glass phase.
Various vortex phases including changes from three to two dimensional behavior
depending on anisotropy have been identified. Careful analysis of
-characteristics in the glass phases revealed a distinctive and
-dependence of the glass exponent . The vortex dynamics in the
Bose-glass phase does not follow the predicted behavior for excitations of
vortex kinks or loops.Comment: 16 pages, 10 figures, 3 table
Measurement of the Decay Asymmetry Parameters in and
We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\
decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for
the decay mode and \aLC = -0.45\pm 0.31 \pm
0.06 for the decay mode . By combining these
measurements with the previously measured decay rates, we have extracted the
parity-violating and parity-conserving amplitudes. These amplitudes are used to
test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures
as uuencoded postscript. Also available as
http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p
Measurement of the branching fraction for
We have studied the leptonic decay of the resonance into tau
pairs using the CLEO II detector. A clean sample of tau pair events is
identified via events containing two charged particles where exactly one of the
particles is an identified electron. We find . The result is consistent with
expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS
94/1297, CLEO 94-20 (submitted to Physics Letters B
- …
