3,551 research outputs found

    Future regional transport aircraft market, constraints, and technology stimuli

    Get PDF
    This report provides updated information on the current market and operating environment and identifies interlinking technical possibilities for competitive future commuter-type transport aircraft. The conclusions on the market and operating environment indicate that the regional airlines are moving toward more modern and effective fleets with greater passenger capacity and comfort, reduced noise levels, increased speed, and longer range. This direction leads to a nearly 'seamless' service and continued code-sharing agreements with the major carriers. Whereas the benefits from individual technologies may be small, the overall integration in existing and new aircraft designs can produce improvements in direct operating cost and competitiveness. Production costs are identified as being equally important as pure technical advances

    Design and mathematical analysis of a three-mirror X-ray telescope based on ATM S-056 X-ray telescope hardware

    Get PDF
    The mathematical design of the aspheric third mirror for the three-mirror X-ray telescope (TMXRT) is presented, along with the imaging characteristics of the telescope obtained by a ray trace analysis. The present design effort has been directed entirely toward obtaining an aspheric third mirror which will be compatible with existing S-056 paraboloidal-hyperboloidal mirrors. This compatability will facilitate the construction of a prototype model of the TMXRT, since it will only be necessary to fabricate one new mirror in order to obtain a working model

    Vignetting characteristics of the S-056 X-ray telescope

    Get PDF
    A ray trace analysis of the vignetting characteristics of the S-056 X ray telescope is presented. The relative energy is calculated in the spot formed in the focal plane of the S-056 X ray telescope by an off axis point source at infinity for off axis angles of 0, 1, 2, ..., 35 arc minutes. At each off axis angle, the relative energies are evaluated using theoretical X ray reflectivity curves for wavelengths of 8.34 A, 17.57 A, and 27.39 A, and also using an experimental X ray reflectivity curve for 8.34 A. The effects of vignetting due purely to the geometry of the S-056 optical system are evaluated separately, as well as jointly with the effects of mirror reflectivity

    Suggested Program of Swimming for Elementary and Junior High School

    Get PDF

    A Causal, Data-Driven Approach to Modeling the Kepler Data

    Full text link
    Astronomical observations are affected by several kinds of noise, each with its own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. The precision of NASA Kepler photometry for exoplanet science---the most precise photometric measurements of stars ever made---appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here we present the Causal Pixel Model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level so that it can capture very fine-grained information about the variation of the spacecraft. The CPM predicts each target pixel value from a large number of pixels of other stars sharing the instrument variabilities while not containing any information on possible transits in the target star. In addition, we use the target star's future and past (auto-regression). By appropriately separating, for each data point, the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the model. The method has four hyper-parameters (the number of predictor stars, the auto-regressive window size, and two L2-regularization amplitudes for model components), which we set by cross-validation. We determine a generic set of hyper-parameters that works well for most of the stars and apply the method to a corresponding set of target stars. We find that we can consistently outperform (for the purposes of exoplanet detection) the Kepler Pre-search Data Conditioning (PDC) method for exoplanet discovery.Comment: Accepted for publication in the PAS
    corecore