35,373 research outputs found

    Multipole polarizability of a graded spherical particle

    Full text link
    We have studied the multipole polarizability of a graded spherical particle in a nonuniform electric field, in which the conductivity can vary radially inside the particle. The main objective of this work is to access the effects of multipole interactions at small interparticle separations, which can be important in non-dilute suspensions of functionally graded materials. The nonuniform electric field arises either from that applied on the particle or from the local field of all other particles. We developed a differential effective multipole moment approximation (DEMMA) to compute the multipole moment of a graded spherical particle in a nonuniform external field. Moreover, we compare the DEMMA results with the exact results of the power-law graded profile and the agreement is excellent. The extension to anisotropic DEMMA will be studied in an Appendix.Comment: LaTeX format, 2 eps figures, submitted for publication

    A Research and Strategy of Remote Sensing Image Denoising Algorithms

    Full text link
    Most raw data download from satellites are useless, resulting in transmission waste, one solution is to process data directly on satellites, then only transmit the processed results to the ground. Image processing is the main data processing on satellites, in this paper, we focus on image denoising which is the basic image processing. There are many high-performance denoising approaches at present, however, most of them rely on advanced computing resources or rich images on the ground. Considering the limited computing resources of satellites and the characteristics of remote sensing images, we do some research on these high-performance ground image denoising approaches and compare them in simulation experiments to analyze whether they are suitable for satellites. According to the analysis results, we propose two feasible image denoising strategies for satellites based on satellite TianZhi-1.Comment: 9 pages, 4 figures, ICNC-FSKD 201

    Hydrogen adsorption on Pd(133) surface

    Full text link
    In this study used is an approach based on measurements of the total energy distribution (TED) of field emitted electrons in order to examine the properties of Pd (133) from the aspect of both hydrogen adsorption and surface hydrides formation. The most favourable sites offered to a hydrogen atom to be adsorbed have been indicated and an attempt to describe the peaks of the enhancement factor R spectrum to the specific adsorption sites has also been made.Comment: to be submitted to the Centr. Eur. J. Phy

    The structure of parafermion vertex operator algebras

    Get PDF
    It is proved that the parafermion vertex operator algebra associated to the irreducible highest weight module for the affine Kac-Moody algebra A_1^{(1)} of level k coincides with a certain W-algebra. In particular, a set of generators for the parafermion vertex operator algebra is determined.Comment: 12 page

    Lattice Calculation of the Strangeness Magnetic Moment of the Nucleon

    Get PDF
    We report on a lattice QCD calculation of the strangeness magnetic moment of the nucleon. Our result is GMs(0)=−0.36±0.20G_M^s(0) = - 0.36 \pm 0.20 . The sea contributions from the u and d quarks are about 80% larger. However, they cancel to a large extent due to their electric charges, resulting in a smaller net sea contribution of −0.097±0.037μN - 0.097 \pm 0.037 \mu_N to the nucleon magnetic moment. As far as the neutron to proton magnetic moment ratio is concerned, this sea contribution tends to cancel out the cloud-quark effect from the Z-graphs and result in a ratio of −0.68±0.04 -0.68 \pm 0.04 which is close to the SU(6) relation and the experiment. The strangeness Sachs electric mean-square radius E_E is found to be small and negative and the total sea contributes substantially to the neutron electric form factor.Comment: 10 pages, 5 figures, LaTex, UK/97-23, ADP-97-55/T28

    Spectral representation of the effective dielectric constant of graded composites

    Full text link
    We generalize the Bergman-Milton spectral representation, originally derived for a two-component composite, to extract the spectral density function for the effective dielectric constant of a graded composite. This work has been motivated by a recent study of the optical absorption spectrum of a graded metallic film [Applied Physics Letters, 85, 94 (2004)] in which a broad surface-plasmon absorption band has been shown to be responsible for enhanced nonlinear optical response as well as an attractive figure of merit. It turns out that, unlike in the case of homogeneous constituent components, the characteristic function of a graded composite is a continuous function because of the continuous variation of the dielectric function within the constituent components. Analytic generalization to three dimensional graded composites is discussed, and numerical calculations of multilayered composites are given as a simple application.Comment: Physical Review E, submitted for publication
    • …
    corecore