1,296 research outputs found

    Interference of multi-mode photon echoes generated in spatially separated solid-state atomic ensembles

    Full text link
    High-visibility interference of photon echoes generated in spatially separated solid-state atomic ensembles is demonstrated. The solid state ensembles were LiNbO3_3 waveguides doped with Erbium ions absorbing at 1.53 μ\mum. Bright coherent states of light in several temporal modes (up to 3) are stored and retrieved from the optical memories using two-pulse photon echoes. The stored and retrieved optical pulses, when combined at a beam splitter, show almost perfect interference, which demonstrates both phase preserving storage and indistinguishability of photon echoes from separate optical memories. By measuring interference fringes for different storage times, we also show explicitly that the visibility is not limited by atomic decoherence. These results are relevant for novel quantum repeaters architectures with photon echo based multimode quantum memories

    BMPix and PEAK tools: New methods for automated laminae recognition and counting — Application to glacial varves from Antarctic marine sediment

    Get PDF
    We present tools for rapid and quantitative detection of sediment lamination. The BMPix tool extracts color and gray-scale curves from images at pixel resolution. The PEAK tool uses the gray-scale curve and performs, for the first time, fully automated counting of laminae based on three methods. The maximum count algorithm counts every bright peak of a couplet of two laminae (annual resolution) in a smoothed curve. The zero-crossing algorithm counts every positive and negative halfway-passage of the curve through a wide moving average, separating the record into bright and dark intervals (seasonal resolution). The same is true for the frequency truncation method, which uses Fourier transformation to decompose the curve into its frequency components before counting positive and negative passages. We applied the new methods successfully to tree rings, to well-dated and already manually counted marine varves from Saanich Inlet, and to marine laminae from the Antarctic continental margin. In combination with AMS14C dating, we found convincing evidence that laminations in Weddell Sea sites represent varves, deposited continuously over several millennia during the last glacial maximum. The new tools offer several advantages over previous methods. The counting procedures are based on a moving average generated from gray-scale curves instead of manual counting. Hence, results are highly objective and rely on reproducible mathematical criteria. Also, the PEAK tool measures the thickness of each year or season. Since all information required is displayed graphically, interactive optimization of the counting algorithms can be achieved quickly and conveniently

    Interference of Spontaneous Emission of Light from two Solid-State Atomic Ensembles

    Full text link
    We report an interference experiment of spontaneous emission of light from two distant solid-state ensembles of atoms that are coherently excited by a short laser pulse. The ensembles are Erbium ions doped into two LiNbO3 crystals with channel waveguides, which are placed in the two arms of a Mach-Zehnder interferometer. The light that is spontaneously emitted after the excitation pulse shows first-order interference. By a strong collective enhancement of the emission, the atoms behave as ideal two-level quantum systems and no which-path information is left in the atomic ensembles after emission of a photon. This results in a high fringe visibility of 95%, which implies that the observed spontaneous emission is highly coherent

    Highly multimode memory in a crystal

    Full text link
    We experimentally demonstrate the storage of 1060 temporal modes onto a thulium-doped crystal using an atomic frequency comb (AFC). The comb covers 0.93 GHz defining the storage bandwidth. As compared to previous AFC preparation methods (pulse sequences i.e. amplitude modulation), we only use frequency modulation to produce the desired optical pumping spectrum. To ensure an accurate spectrally selective optical pumping, the frequency modulated laser is self-locked on the atomic comb. Our approach is general and should be applicable to a wide range of rare-earth doped material in the context of multimode quantum memory

    The ionized and hot gas in M17 SW: SOFIA/GREAT THz observations of [C II] and 12CO J=13-12

    Full text link
    With new THz maps that cover an area of ~3.3x2.1 pc^2 we probe the spatial distribution and association of the ionized, neutral and molecular gas components in the M17 SW nebula. We used the dual band receiver GREAT on board the SOFIA airborne telescope to obtain a 5'.7x3'.7 map of the 12CO J=13-12 transition and the [C II] 158 um fine-structure line in M17 SW and compare the spectroscopically resolved maps with corresponding ground-based data for low- and mid-J CO and [C I] emission. For the first time SOFIA/GREAT allow us to compare velocity-resolved [C II] emission maps with molecular tracers. We see a large part of the [C II] emission, both spatially and in velocity, that is completely non-associated with the other tracers of photon-dominated regions (PDR). Only particular narrow channel maps of the velocity-resolved [C II] spectra show a correlation between the different gas components, which is not seen at all in the integrated intensity maps. These show different morphology in all lines but give hardly any information on the origin of the emission. The [C II] 158 um emission extends for more than 2 pc into the M17 SW molecular cloud and its line profile covers a broader velocity range than the 12CO J=13-12 and [C I] emissions, which we interpret as several clumps and layers of ionized carbon gas within the telescope beam. The high-J CO emission emerges from a dense region between the ionized and neutral carbon emissions, indicating the presence of high-density clumps that allow the fast formation of hot CO in the irradiated complex structure of M17 SW. The [C II] observations in the southern PDR cannot be explained with stratified nor clumpy PDR models.Comment: 4 pages, 4 figures, letter accepted for the SOFIA/GREAT A&A 2012 special issu

    Conditional detection of pure quantum states of light after storage in a waveguide

    Full text link
    Conditional detection is an important tool to extract weak signals from a noisy background and is closely linked to heralding, which is an essential component of protocols for long distance quantum communication and distributed quantum information processing in quantum networks. Here we demonstrate the conditional detection of time-bin qubits after storage in and retrieval from a photon-echo based waveguide quantum memory. Each qubit is encoded into one member of a photon-pair produced via spontaneous parametric down conversion, and the conditioning is achieved by the detection of the other member of the pair. Performing projection measurements with the stored and retrieved photons onto different bases we obtain an average storage fidelity of 0.885 \pm 0.020, which exceeds the relevant classical bounds and shows the suitability of our integrated light-matter interface for future applications of quantum information processing.Comment: 4 pages, 4 figure

    Baryon spectra with instanton induced forces

    Full text link
    Except the vibrational excitations of KK and K∗K^* mesons, the main features of spectra of mesons composed of quarks uu, dd, and ss can be quite well described by a semirelativistic potential model including instanton induced forces. The spectra of baryons composed of the same quarks is studied using the same model. The results and the limitations of this approach are described. Some possible improvements are suggested.Comment: 5 figure
    • …
    corecore