1,263 research outputs found

    A fast search strategy for gravitational waves from low-mass X-ray binaries

    Full text link
    We present a new type of search strategy designed specifically to find continuously emitting gravitational wave sources in known binary systems based on the incoherent sum of frequency modulated binary signal sidebands. The search pipeline can be divided into three stages: the first is a wide bandwidth, F-statistic search demodulated for sky position. This is followed by a fast second stage in which areas in frequency space are identified as signal candidates through the frequency domain convolution of the F-statistic with an approximate signal template. For this second stage only precise information on the orbit period and approximate information on the orbital semi-major axis are required apriori. For the final stage we propose a fully coherent Markov chain monte carlo based follow up search on the frequency subspace defined by the candidates identified by the second stage. This search is particularly suited to the low-mass X-ray binaries, for which orbital period and sky position are typically well known and additional orbital parameters and neutron star spin frequency are not. We note that for the accreting X-ray millisecond pulsars, for which spin frequency and orbital parameters are well known, the second stage can be omitted and the fully coherent search stage can be performed. We describe the search pipeline with respect to its application to a simplified phase model and derive the corresponding sensitivity of the search.Comment: 13 pages, 3 figures, to appear in the GWDAW 11 conference proceeding

    Corundum-Hibonite Inclusions and the Environments of High Temperature Processing in the Early Solar System

    Get PDF
    Calcium, Aluminum-rich inclusions (CAIs) are composed of the suite of minerals predicted to be the first to condense from a cooling gas of solar composition [1]. Yet, the first phase to condense, corundum, is rare in CAIs, having mostly reacted to form hibonite followed by other phases at lower temperatures. Many CAIs show evidence of complex post-formational histories, including condensation, evaporation, and melting [e.g. 2, 3]. However, the nature of these thermal events and the nebular environments in which they took place are poorly constrained. Some corundum and corundum-hibonite grains appear to have survived or avoided these complex CAI reprocessing events. Such ultra-refractory CAIs may provide a clearer record of the O isotopic composition of the Sun and the evolution of the O isotopic composition of the planet-forming region [4-6]. Here we present in situ O and Mg isotopic analyses of two corundum/hibonite inclusions that record differing formation histories

    Is faster still better in therapeutic hypothermia?

    Get PDF
    The rapid institution of therapeutic hypothermia after cardiac arrest has become an accepted practice. In the previous issue of Critical Care, Haugk and colleagues present a retrospective analysis of 13 years of experience with therapeutic hypothermia at their center that suggests an association between rate of cooling and less favorable neurological outcomes. The association most likely reflects easier cooling in patients more severely brain injured by their initial cardiac arrest, and should not lead clinicians to abandon or slow their efforts to achieve post-resuscitative cooling

    Assemblage of Presolar Materials and Early Solar System Condensates in Chondritic Porous Interplanetary Dust Particles

    Get PDF
    Anhydrous chondritic porous inter-planetary dust particles (CP IDPs) contain an assortment of highly primitive solar system components, molecular cloud matter, and presolar grains. These IDPs have largely escaped parent body processing that has affected meteorites, advocating cometary origins. Though the stardust abundance in CP IDPs is generally greater than in primitive meteorites, it can vary widely among individual CP IDPs. The average abundance of silicate stardust among isotopically primitive IDPs is approx. 375 ppm while some have extreme abundances up to approx. 1.5%. H and N isotopic anomalies are common in CP IDPs and the carrier of these anomalies has been traced to organic matter that has experienced chemical reactions in cold molecular clouds or the outer protosolar disk. Significant variations in these anomalies may reflect different degrees of nebular processing. Refractory inclusions are commonly observed in carbonaceous chondrites. These inclusions are among the first solar system condensates and display 16O-rich isotopic compositions. Refractory grains have also been observed in the comet 81P/Wild-2 samples re-turned from the Stardust Mission and in CP IDPs, but they occur with much less frequency. Here we conduct coordinated mineralogical and isotopic analyses of CP IDPs that were characterized for their bulk chemistry by to study the distribution of primitive components and the degree of nebular alteration incurred

    Identification of a Compound Spinel and Silicate Presolar Grain in a Chondritic Interplanetary Dust Particle

    Get PDF
    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) have undergone minimal parent body alteration and contain an assemblage of highly primitive materials, including molecular cloud material, presolar grains, and material that formed in the early solar nebula [1-3]. The exact parent bodies of individual IDPs are not known, but IDPs that have extremely high abundances of presolar silicates (up to 1.5%) most likely have cometary origins [1, 4]. The presolar grain abundance among these minimally altered CP IDPs varies widely. "Isotopically primitive" IDPs distinguished by anomalous bulk N isotopic compositions, numerous 15N-rich hotspots, and some C isotopic anomalies have higher average abundances of presolar grains (~375 ppm) than IDPs with isotopically normal bulk N (<10 ppm) [5]. Some D and N isotopic anomalies have been linked to carbonaceous matter, though this material is only rarely isotopically anomalous in C [1, 5, 6]. Previous studies of the bulk chemistry and, in some samples, the mineralogy of select anhydrous CP IDPs indicate a link between high C abundance and pyroxene-dominated mineralogy [7]. In this study, we conduct coordinated mineralogical and isotopic analyses of samples that were analyzed by [7] to characterize isotopically anomalous materials and to establish possible correlations with C abundance

    Timing of Formation of a Wassonite-bearing Chondrule

    Get PDF
    Wassonite, ideally stoichiometric TiS, is a titanium monosulfide recently discovered in the Yamato 691 EH3 enstatite chondrite. Wassonite grains were located within the mesostasis of a single barred olivine chondrule. Such chondrules likely formed in the solar nebula by melting of fine grained precursor dust. The reduced nature of enstatite chondrites, and the wassonite-bearing chondrule in particular, may suggest precursor materials included Ti-bearing troilite, metallic Fe-Ni, and possibly graphite. Under the reducing conditions present in enstatite chondrites S can partition more readily into silicate melt, leading to raised Ti content of the residual Fe-FeS melt. By the time sulfide crystallized from the melt, the Ti concentration was high enough to form small grains of pure TiS - wassonite. As a mineral not previously observed in nature wassonite and its host chondrule may provide additional constraints on physical and chemical conditions in the solar nebula at a specific time and location relevant to planetary formation. Enstatite chondrites and Earth share similar isotopic compositions of Cr, Ni, Ti, O and N. Understanding the formation conditions of enstatite chondrite chondrules may therefore have wider relevance for terrestrial planet accretion and other early inner solar system processes. Here we present preliminary results of an investigation of the Al-Mg systematics of the only known wassonite-bearing chondrule. The goal of this study is to determine whether this chondrule's formation was contemporaneous with other enstatite chondrite chondrules and to establish its place in the broader timeline of solar system events

    A FIB/TEM/Nanosims Study of a Wark-Lovering Rim on an Allende CAI

    Get PDF
    Ca- Al-rich inclusions (CAIs) are commonly surrounded by Wark-Lovering (WL) rims - thin (approx. 50 micrometers) multilayered sequences - whose mineralogy is dominated by high temperature minerals similar to those that occur in the cores of CAIs [1]. The origins of these WL rims involved high temperature events in the early nebula such as condensation, flashheating or reaction with a nebular reservoir, or combinations of these processes. These rims formed after CAI formation but prior to accretion into their parent bodies. We have undertaken a coordinated mineralogical and isotopic study of WL rims to determine the formation conditions of the individual layers and to constrain the isotopic reservoirs they interacted with during their history. We focus here on the spinel layer, the first-formed highest- temperature layer in the WL rim sequence. Results and Discussion: We have performed mineralogical, chemical and isotopic analyses of an unusual ultrarefractory inclusion from the Allende CV3 chondrite (SHAL) consisting of an approx. 500 micrometers long single crystal of hibonite and co-existing coarsegrained perovskite. SHAL is partially surrounded by WL rim. We previously reported on the mineralogy, isotopic compositions and trace elements in SHAL [2-4]. The spinel layer in the WL rim is present only on the hibonite and terminates abruptly at the contact with the coarse perovskite. This simple observation shows that the spinel layer is not a condensate in this case (otherwise spinel would have condensed on the perovskite as well). The spinel layer appears to have formed by gas-phase corrosion of the hibonite by Mg-rich vapors such that the spinel layer grew at the expense of the hibonite. We also found that the spinel layer has the same 16Orich composition as the hibonite. The spinel layer is polycrystalline and individual crystals do not show a crystallographic relationship with the hibonite. An Al-diopside layer overlies the spinel layer, and is present on both the hibonite and perovskite. While the spinel is 16O-rich, WL-rim perovskite and pyroxene are 16O-poor. This isotopic heterogeneity likely reflects O isotopic equilibration of WL-rim perovskite and pyroxene with a planetary O isotopic reservoir after the WL rim formation. The hibonite is zoned and contains wt.% levels of Ti, Mg and Fe in contact with the Fe-bearing spinel (Sp60Hc40) in the WL rim. The Fe enrichment in spinel is likely related to the Na-Fe metasomatism that is ubiquitous in Allende. Conclusions: The petrography and microstructure of the spinel layer in a WL rim sequence shows that it formed by gas phase reactions at high temperature in the nebula. The oxygen isotopic composition of the spinel indicates that this WL rim layer formed in the same (or similar) nebular gas reservoir as the host CAI

    A FIB/TEM Study of a Complex Wark-Lovering Rim on a Vigarano CAI

    Get PDF
    Wark-Lovering (WL) rims are thin multilayered mineral sequences that surround most Ca, Al-rich inclusions (CAIs). Several processes have been proposed for WL rim formation, including condensation, flash-heating or reaction with a nebular reservoir, or combinations of these [e.g. 1-7], but no consensus exists. Our previous coordinated transmission electron microscope (TEM) and NanoSIMS O isotopic measurements showed that a WL rim experienced flash heating events in a nebular environment with planetary O isotopic composition, distinct from the (16)O-rich formation environment [6]. Our efforts have focused on CAIs from the CV(sub red) chondrites, especially Vigarano, because these have escaped much of the parent body alteration effects that are common in CAIs from CV(sub ox) group

    New Manganese Silicide Mineral Phase in an Interplanetary Dust Particle

    Get PDF
    Comet 26P/Grigg-Skjellerup was identified as a source of an Earth-crossing dust stream with low Earth-encounter velocities, with peak anticipated fluxes during April in 2003 and 2004 [1]. In response to this prediction, NASA performed dedicated stratospheric dust collections using high altitude aircraft to target potential interplanetary dust particles (IDPs) from this comet stream in April 2003. Several IDPs from this collection have shown unusually low noble gas abundances [2] consistent with the predicted short space exposure ages of Grigg-Skjellerup dust particles [1]. High abundances of large D enrichments [3] and presolar grains [4] in IDPs from this collection are also consistent with an origin from the comet Grigg-Skjellerup. Here we report a new mineral from one of the cluster IDPs of the "Grigg-Skjellerup" collection, L2055. Our report focuses on an unusual manganese-iron-chromium silicide phase that, to our knowledge, has not been observed previously in nature. This unique phase may also shed light on the genesis of the enigmatic low-Fe,Mn-enriched (LIME) olivine that has been previously reported in IDPs and meteorites [5]

    Investigating the Geological History of Asteroid 101955 Bennu Through Remote Sensing and Returned Sample Analyses

    Get PDF
    The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses
    • …
    corecore