248,116 research outputs found

    Implantable RF-coiled chip packaging

    Get PDF
    In this paper, we present an embedded chip integration technology that utilizes silicon housings and flexible parylene radio frequency (RF) coils. As a demonstration of this technology, a flexible parylene RF coil has been integrated with an RF identification (RFID) chip. The coil has an inductance of 16 μH, with two layers of metal completely encapsulated in parylene-C. The functionality of the embedded chip is verified using an RFID reader module. Accelerated-lifetime soak testing has been performed in saline, and the results show that the silicon chip is well protected and the lifetime of our parylene-encapsulated RF coil at 37 °C is more than 20 years

    Plasmon geometric phase and plasmon Hall shift

    Full text link
    The collective plasmonic modes of a metal comprise a pattern of charge density and tightly-bound electric fields that oscillate in lock-step to yield enhanced light-matter interaction. Here we show that metals with non-zero Hall conductivity host plasmons with a fine internal structure: they are characterized by a current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This non-trivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wavepackets to acquire geometric phases as they scatter. Strikingly, at boundaries these phases accumulate allowing plasmon waves that reflect off to experience a non-reciprocal parallel shift along the boundary displacing the incident and reflected plasmon trajectories. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displays the chirality of the plasmon's current distribution and can be probed by near-field photonics techniques. Anomalous plasmon dynamics provide a real-space window into the inner structure of plasmon bands, as well as new means for directing plasmonic beams

    Method and apparatus for positioning a robotic end effector

    Get PDF
    A robotic end effector and operation protocol for a reliable grasp of a target object irrespective of the target's contours is disclosed. A robotic hand includes a plurality of jointed fingers, one of which, like a thumb, is in opposed relation to the other. Each finger is comprised of at least two jointed sections, and provided with reflective proximity sensors, one on the inner surface of each finger section. Each proximity sensor comprises a transmitter of a beam of radiant energy and means for receiving reflections of the transmitted energy when reflected by a target object and for generating electrical signals responsive thereto. On the fingers opposed to the thumb, the proximity sensors on the outermost finger sections are aligned in an outer sensor array and the sensors on the intermediate finger sections and sensors on the innermost finger sections are similarly arranged to form an intermediate sensor array and an inner sensor array, respectively. The invention includes a computer system with software and/or circuitry for a protocol comprising the steps in sequence of: (1) approach axis alignment to maximize the number of outer layer sensors which detect the target; (2) non-contact contour following the target by the robot fingers to minimize target escape potential; and (3) closing to rigidize the target including dynamically re-adjusting the end effector finger alignment to compensate for target motion. A signal conditioning circuit and gain adjustment means are included to maintain the dynamic range of low power reflection signals

    Large optical conductivity of Dirac semimetal Fermi arc surfaces states

    Full text link
    Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.Comment: 8 pages, 3 figure

    Two-Higgs-Doublet-Models and Radiative CP Violation

    Get PDF
    We discuss the feasibility of spontaneous CP violation being induced by radiative corrections in 2HDM's. Specifically, we analyze the cases of gaugino/higgsino effect on MSSM, and a new model with an extra exotic quark doublet. The new model, while demonstrating well the Georgi-Pais theorem, is also expected to be phenomenlogically interesting.Comment: 8 pages + cover, 3 figures incoporated, in latex with aipproc.sty /aipproc.cls, talk given by O.K. at MRST '9

    Instrumentation of a high-sensitivity microwave vector detection system for low-temperature applications

    Full text link
    We present the design and the circuit details of a high-sensitivity microwave vector detection system, which is aiming for studying the low-dimensional electron system embedded in the slots of a coplanar waveguide at low temperatures. The coplanar waveguide sample is placed inside a phase-locked loop; the phase change of the sample may cause a corresponding change in the operation frequency, which can be measured precisely. We also employ a double-pulse modulation on the microwave signals, which comprises a fast pulse modulation for gated averaging and a slow pulse modulation for lock-in detection. In measurements on real samples at low temperatures, this system provides much better resolutions in both amplitude and phase than most of the conventional vector analyzers at power levels below -65 dBm.Comment: 7 pages, 11 figures, 1 table, lette
    • …
    corecore