5,020 research outputs found
Migration and giant planet formation
We extend the core-accretion model of giant gaseous planets by Pollack et al.
(\cite{P96}) to include migration, disc evolution and gap formation. Starting
with a core of a fraction of an Earth's mass located at 8 AU, we end our
simulation with the onset of runaway gas accretion when the planet is at 5.5 AU
1 Myr later. This timescale is about a factor ten shorter than the one found by
Pollack et al. (\cite{P96}) even though the disc was less massive initially and
viscously evolving. Other initial conditions can lead to even shorter
timescales. The reason for this speed-up is found to result from the fact that
a moving planet does not deplete its feeding zone to the extend of a static
planet. Thus, the uncomfortably long formation timescale associated with the
core-accretion scenario can be considerably reduced and brought in much better
agreement with the typical disc lifetimes inferred from observations of young
circumstellar discs.Comment: 9 pages, 2 figures, published in A&A Letter
Formation of bi-lobed shapes by sub-catastrophic collisions: A late origin of comet 67P/C-G's structure
The origin of the particular shape of a small body like comet
67P/Churyumov-Gerasimenko (67P/C-G) is a topic of active research. How and when
it acquired its peculiar characteristics has distinct implications on the
origin of the solar system and its dynamics. We investigate how shapes like the
one of comet 67P/C-G can result from a new type of low-energy, sub-catastrophic
impacts involving elongated, rotating bodies. We focus on parameters
potentially leading to bi-lobed structures. We also estimate the probability
for such structures to survive subsequent impacts. We use a smooth particle
hydrodynamics (SPH) shock physics code to model the impacts, the subsequent
reaccumulation of material and the reconfiguration into a stable final shape.
The energy increase as well as the degree of compaction of the resulting bodies
are tracked in the simulations. Our modelling results suggest that the
formation of bi-lobed structures like 67P/C-G is a natural outcome of the low
energy, sub-catastrophic collisions considered here. Sub-catastrophic impacts
have the potential to alter the shape of a small body significantly, without
leading to major heating or compaction. The currently observed shapes of
cometary nuclei, such as 67P/C-G, maybe a result of such a last major shape
forming impact.Comment: Astronomy & Astrophysics, accepted pending minor revision
Effects of a giant impact on Uranus
The effects of a giant impact on Uranus with respect to the axis tilt of Uranus and its satellites are discussed. The simulations of possible giant impacts were carried out using Cray supercomputers. The technique used is called smooth particle hydrodynamics (SPH). In this technique, the material in the proto-Uranus planet and in the impactor is divided into a large number of particles which can overlap one another so that local averages over these particles determine density and pressure in the problem, and the particles themselves have their own temperatures and internal energies. During the course of the simulation, these particles move around under the influence of the forces acting on them: gravity and pressure gradients. The results of model simulations are presented
Catastrophic disruptions revisited
We use a smooth particle hydrodynamics method (SPH) to simulate colliding
rocky and icy bodies from cm-scale to hundreds of km in diameter, in an effort
to define self-consistently the threshold for catastrophic disruption. Unlike
previous efforts, this analysis incorporates the combined effects of material
strength (using a brittle fragmentation model) and self-gravitation, thereby
providing results in the ``strength regime'' and the ``gravity regime'', and in
between. In each case, the structural properties of the largest remnant are
examined.Comment: To appear in Icaru
Critical core mass for enriched envelopes: the role of H2O condensation
Context. Within the core accretion scenario of planetary formation, most
simulations performed so far always assume the accreting envelope to have a
solar composition. From the study of meteorite showers on Earth and numerical
simulations, we know that planetesimals must undergo thermal ablation and
disruption when crossing a protoplanetary envelope. Once the protoplanet has
acquired an atmosphere, the primordial envelope gets enriched in volatiles and
silicates from the planetesimals. This change of envelope composition during
the formation can have a significant effect in the final atmospheric
composition and on the formation timescale of giant planets.
Aims. To investigate the physical implications of considering the envelope
enrichment of protoplanets due to the disruption of icy planetesimals during
their way to the core. Particular focus is placed on the effect on the critical
core mass for envelopes where condensation of water can occur.
Methods. Internal structure models are numerically solved with the
implementation of updated opacities for all ranges of metallicities and the
software CEA to compute the equation of state. CEA computes the chemical
equilibrium for an arbitrary mixture of gases and allows the condensation of
some species, including water. This means that the latent heat of phase
transitions is consistently incorporated in the total energy budget.
Results. The critical core mass is found to decrease significantly when an
enriched envelope composition is considered in the internal structure
equations. A particular strong reduction of the critical core mass is obtained
for planets whose envelope metallicity is larger than Z=0.45 when the outer
boundary conditions are suitable for condensation of water to occur in the top
layers of the atmosphere. We show that this effect is qualitatively preserved
when the atmosphere is out of chemical equilibrium.Comment: Accepted for publication in A&
Theoretical models of planetary system formation. II. Post-formation evolution
We extend the results of planetary formation synthesis by computing the
long-term evolution of synthetic systems from the clearing of the gas disk into
the dynamical evolution phase. We use the symplectic integrator SyMBA to
numerically integrate the orbits of planets for 100 Ma, using populations from
previous studies as initial conditions.We show that within the populations
studied, mass and semi-major axis distributions experience only minor changes
from post-formation evolution. We also show that, depending upon their initial
distribution, planetary eccentricities can statistically increase or decrease
as a result of gravitational interactions. We find that planetary masses and
orbital spacings provided by planet formation models do not result in
eccentricity distributions comparable to observed exoplanet eccentricities,
requiring other phenomena such as e.g. stellar fly-bys to account for observed
eccentricities
Tidal disruption of inviscid protoplanets
Roche showed that equilibrium is impossible for a small fluid body synchronously orbiting a primary within a critical radius now termed the Roche limit. Tidal disruption of orbitally unbound bodies is a potentially important process for planetary formation through collisional accumulation, because the area of the Roche limit is considerably larger then the physical cross section of a protoplanet. Several previous studies were made of dynamical tidal disruption and different models of disruption were proposed. Because of the limitation of these analytical models, we have used a smoothed particle hydrodynamics (SPH) code to model the tidal disruption process. The code is basically the same as the one used to model giant impacts; we simply choose impact parameters large enough to avoid collisions. The primary and secondary both have iron cores and silicate mantles, and are initially isothermal at a molten temperature. The conclusions based on the analytical and numerical models are summarized
How primordial is the structure of comet 67P/C-G? Combined collisional and dynamical models suggest a late formation
There is an active debate about whether the properties of comets as observed
today are primordial or, alternatively, if they are a result of collisional
evolution or other processes. We investigate the effects of collisions on a
comet with a structure like 67P/C-G. We develop scaling laws for the critical
specific impact energies required for a significant shape alteration. These are
then used in simulations of the combined dynamical and collisional evolution of
comets in order to study the survival probability of a primordially formed
object with a shape like 67P/C-G. The effects of impacts on comet 67P/C-G are
studied using a SPH shock physics code. The resulting critical specific impact
energy defines a minimal projectile size which is used to compute the number of
shape-changing collisions in a set of dynamical simulations. These simulations
follow the dispersion of the trans-Neptunian disk during the giant planet
instability, the formation of a scattered disk, and produce 87 objects that
penetrate into the inner solar system with orbits consistent with the observed
JFC population. The collisional evolution before the giant planet instability
is not considered here. Hence, our study is conservative in its estimation of
the number of collisions. We find that in any scenario considered here, comet
67P/C-G would have experienced a significant number of shape-changing
collisions, if it formed primordially. This is also the case for generic
bi-lobe shapes. Our study also shows that impact heating is very localized and
that collisionally processed bodies can still have a high porosity. Our study
indicates that the observed bi-lobe structure of comet 67P/C-G may not be
primordial, but might have originated in a rather recent event, possibly within
the last 1 Gy. This may be the case for any kilometer-sized two-component
cometary nuclei.Comment: Astronomy & Astrophysics, accepted pending minor revision
A new Monte Carlo code for star cluster simulations: II. Central black hole and stellar collisions
We have recently written a new code to simulate the long term evolution of spherical clusters of stars. It is based on the pioneering Monte Carlo scheme proposed by Henon in the 70's. Our code has been devised in the specific goal to treat dense galactic nuclei. After having described how we treat relaxation in a first paper, we go on and include further physical ingredients that are mostly pertinent to galactic nuclei, namely the presence of a central (growing) black hole (BH) and collisions between MS stars. Stars that venture too close to the BH are destroyed by the tidal field. This process is a channel to feed the BH and a way to produce accretion flares. Collisions between stars have often been proposed as another mechanism to drive stellar matter into the central BH. To get the best handle on the role of this process in galactic nuclei, we include it with unpreceded realism through the use of a set of more than 10000 collision simulations carried out with a SPH (Smoothed Particle Hydrodynamics) code. Stellar evolution has also been introduced in a simple way, similar to what has been done in previous dynamical simulations of galactic nuclei. To ensure that this physics is correctly simulated, we realized a variety of tests whose results are reported here. This unique code, featuring most important physical processes, allows million particle simulations, spanning a Hubble time, in a few CPU days on standard personal computers and provides a wealth of data only rivalized by N-body simulations
Genomic aberrations in normal tissue adjacent to HER2-amplified breast cancers: field cancerization or contaminating tumor cells?
Field cancerization effects as well as isolated tumor cell foci extending well beyond the invasive tumor margin have been described previously to account for local recurrence rates following breast conserving surgery despite adequate surgical margins and breast radiotherapy. To look for evidence of possible tumor cell contamination or field cancerization by genetic effects, a pilot study (Study 1: 12 sample pairs) followed by a verification study (Study 2: 20 sample pairs) were performed on DNA extracted from HER2-positive breast tumors and matching normal adjacent mammary tissue samples excised 1-3 cm beyond the invasive tumor margin. High-resolution molecular inversion probe (MIP) arrays were used to compare genomic copy number variations, including increased HER2 gene copies, between the paired samples; as well, a detailed histologic and immunohistochemical (IHC) re-evaluation of all Study 2 samples was performed blinded to the genomic results to characterize the adjacent normal tissue composition bracketing the DNA-extracted samples. Overall, 14/32 (44 %) sample pairs from both studies produced genome-wide evidence of genetic aberrations including HER2 copy number gains within the adjacent normal tissue samples. The observed single-parental origin of monoallelic HER2 amplicon haplotypes shared by informative tumor-normal pairs, as well as commonly gained loci elsewhere on 17q, suggested the presence of contaminating tumor cells in the genomically aberrant normal samples. Histologic and IHC analyses identified occult 25-200 μm tumor cell clusters overexpressing HER2 scattered in more than half, but not all, of the genomically aberrant normal samples re-evaluated, but in none of the genomically normal samples. These genomic and microscopic findings support the conclusion that tumor cell contamination rather than genetic field cancerization represents the likeliest cause of local clinical recurrence rates following breast conserving surgery, and mandate caution in assuming the genomic normalcy of histologically benign appearing peritumor breast tissue
- …
