106 research outputs found

    Two-loop Correction to the Instanton Density for the Double Well Potential

    Full text link
    Feynman diagrams in the instanton background are used for the calculation of the tunneling amplitude, up to the two-loops order. Some mistakes made in the previous works are corrected. The same method is applied to the next-order corrections to the ground state wave function

    An advanced thermal roughness model for airless planetary bodies. Implications for global variations of lunar hydration and mineralogical mapping of Mercury with the MERTIS spectrometer

    Get PDF
    We present a combined reflectance and thermal radiance model for airless planetary bodies. The Hapke model provides the reflected component. The developed thermal model is the first to consistently use rough fractal surfaces, self-scattering, self-heating, and disk-resolved bolometric albedo for entire planets. We validated the model with disk-resolved lunar measurements acquired by the Chinese weather satellite Gaofen-4 at around 3.5–4.1 μm and measurements of the Diviner lunar radiometer at 8.25 μm and 25–41 μm, finding nearly exact agreement. Further, we reprocessed the thermal correction of the global lunar reflectance maps obtained by the Moon Mineralogy Mapper M3 and employed the new model to correct excess thermal radiance. The results confirm the diurnal, latitudinal, and compositional variations of lunar hydration reported in previous and recent studies with other instruments. Further, we compared the model to lunar measurements obtained by the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) on board BepiColombo during a flyby maneuver on April 9, 2020: the measured and the modeled radiance variations across the disk match. Finally, we adapted the thermal model to Mercury for emissivity calibration of upcoming Mercury flyby measurements and in-orbit operation. Although a physical parameter must be invariant under various observation scenarios, the best lunar surface roughness fits vary between different datasets. We critically discuss possible reasons and conclude that anisotropic emissivity modeling has room for improvement and requires attention in future studies

    Discovery of a Dust Sorting Process on Boulders Near the Reiner Gamma Swirl on the Moon

    Get PDF
    In a database of lunar fractured boulders (Rüsch & Bickel, 2023, https://doi.org/10.3847/psj/acd1ef), we found boulders with reflectance features dissimilar to previously known morphologies. We performed a photo-geologic investigation and determined that the features correspond to a dust mantling on top of boulders with a unique photometric behavior. We next performed a photometric model inversion on the dust mantling using Bayesian inference sampling. Modeling indicates that the dust photometric anomaly is most likely due to a reduced opposition effect, whereas the single scattering albedo is not significantly different from that of the nearby background regolith. This implies a different structure of the dust mantling relative to the normal regolith. We identified and discussed several potential processes to explain the development of such soil. None of these mechanisms can entirely explain the multitude of observational constraints unless evoking anomalous boulder properties. Further study of these boulders can shed light on the workings of a natural dust sorting process potentially involving dust dynamics, a magnetic field, and electrostatic dust transport. The presence of these boulders appears to be limited to the Reiner K crater near the Reiner Gamma magnetic and photometric anomaly. This close spatial relationship further highlights that poorly understood processes occur in this specific region of the Moon

    Degassing rhythms and fluctuations of geogenic gases in a red wood-ant nest and in soil in the Neuwied Basin (East Eifel Volcanic Field, Germany)

    Get PDF
    Geochemical tracers of crustal fluids (CO2, He, Rn) provide a useful tool for the identification of buried fault structures. We acquired geochemical data during 7-months of continual sampling to identify causal processes underlying correlations between ambient air and degassing patterns of three gases (CO2, He, Rn) in a nest of red wood ants (Formica polyctena; “RWA”) and the soil at Goloring in the Neuwied Basin, a part of the East Eifel Volcanic Field (EEVF). We explored whether temporal relations and degassing rhythms in soil and nest gas concentrations could be indicators of hidden faults through which the gases migrate to the surface from depth. In nest gas, the coupled system of CO2-He and He concentrations exceeding atmospheric standards 2-3 fold suggested that RWA nests may be biological indicators of hidden degassing faults and fractures at small scales. Equivalently periodic degassing infradian rhythms in the RWA nest, soil, and three nearby minerals springs suggested NW-SE and NE-SW tectonic linkages. Because volcanic activity in the EEVF is dormant, more detailed information on the EEVF’s tectonic, magmatic, and degassing systems and its active tectonic fault zones are needed. Such data could provide additional insights into earthquake processes that are related to magmatic processes at the lower crust

    Can a Red Wood-Ant Nest Be Associated with Fault-Related CH4 Micro-Seepage? A Case Study from Continuous Short-Term In-Situ Sampling

    Get PDF
    Simple Summary Methane (CH4) is common on Earth but its natural sources are not well-characterized. We investigated concentrations of CH4 and its stable carbon isotope (δ13C-CH4) within a red wood-ant (RWA; Formica polyctena) nest in the Neuwied Basin, a part of the East Eifel Volcanic Field (EEVF), and tested for associations between methane concentration and RWA activity patterns, earthquakes, and earth tides. Methane degassing was not synchronized with earth tides, nor was it influenced by a micro-earthquake or RWA activity. Elevated CH4 concentrations in nest gas appear to result from a combination of microbial activity and fault-related emissions. The latter could result from micro-seepage of methane derived from low-temperature gas-water-rock reactions that subsequently moves via fault networks through the RWA nest or from overlapping micro-seepage of magmatic CH4 from the Eifel plume. Given the abundance of RWA nests on the landscape, their role as sources of microbial CH4 and biological indicators for abiotically-derived CH4 should be included in estimations of methane emissions that are contributing to climatic change. Abstract We measured methane (CH4) and stable carbon isotope of methane (δ13C-CH4) concentrations in ambient air and within a red wood-ant (RWA; Formica polyctena) nest in the Neuwied Basin (Germany) using high-resolution in-situ sampling to detect microbial, thermogenic, and abiotic fault-related micro-seepage of CH4. Methane degassing from RWA nests was not synchronized with earth tides, nor was it influenced by micro-earthquake degassing or concomitantly measured RWA activity. Two δ13C-CH4 signatures were identified in nest gas: −69‰ and −37‰. The lower peak was attributed to microbial decomposition of organic matter within the RWA nest, in line with previous observations that RWA nests are hot-spots of microbial CH4. The higher peak has not been reported in previous studies. We attribute this peak to fault-related CH4 emissions moving via fault networks into the RWA nest, which could originate either from thermogenic or abiotic CH4 formation. Sources of these micro-seepages could be Devonian schists, iron-bearing “Klerf Schichten”, or overlapping micro-seepage of magmatic CH4 from the Eifel plume. Given the abundance of RWA nests on the landscape, their role as sources of microbial CH4 and biological indicators for abiotically-derived CH4 should be included in estimation of methane emissions that are contributing to climatic change

    3D computer vision: efficient methods and applications

    No full text
    Wöhler C. 3D computer vision: efficient methods and applications. X.media.publishing. Berlin: Springer; 2009
    corecore