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Abstract: Geochemical tracers of crustal fluids (CO2, He, Rn) provide a useful tool for the
identification of buried fault structures. We acquired geochemical data during 7-months of continual
sampling to identify causal processes underlying correlations between ambient air and degassing
patterns of three gases (CO2, He, Rn) in a nest of red wood ants (Formica polyctena; “RWA”) and the
soil at Goloring in the Neuwied Basin, a part of the East Eifel Volcanic Field (EEVF). We explored
whether temporal relations and degassing rhythms in soil and nest gas concentrations could be
indicators of hidden faults through which the gases migrate to the surface from depth. In nest gas,
the coupled system of CO2-He and He concentrations exceeding atmospheric standards 2-3 fold
suggested that RWA nests may be biological indicators of hidden degassing faults and fractures at
small scales. Equivalently periodic degassing infradian rhythms in the RWA nest, soil, and three
nearby minerals springs suggested NW-SE and NE-SW tectonic linkages. Because volcanic activity in
the EEVF is dormant, more detailed information on the EEVF’s tectonic, magmatic, and degassing
systems and its active tectonic fault zones are needed. Such data could provide additional insights
into earthquake processes that are related to magmatic processes at the lower crust.

Keywords: Formica polyctena; red wood ant; geogenic gases; East Eifel Volcanic field (EEVF);
earthquakes; Earth tides

1. Introduction

The seismically active East Eifel Volcanic Field (EEVF) and its adjoining Neuwied basin have
been the focus of many vulcanological, geochemical, petrochemical, and tectonic investigations.
These have focused on dormant but not extinct volcanic activity [1–3]; the present-day NW–SE-directed
compressional stress field and its related seismic activity [4,5]; gas composition and chemical tracers of
mineral waters [6–8]; and mofettes along the Laacher See or at Obermendig [9]. Data collection and
monitoring only has been annual, for example, [8] or short-term (4 days; [9]).

Geochemical tracers of crustal fluid for example, carbon dioxide (CO2), helium (He), and radon
(Rn) can identify buried fault structures in bedrocks [10,11]. Changes in soil gas concentrations
reflect heterogeneities linked to soils or tectonic structures, for example, [9,12]. Faults and fracture
networks from macro- to micro-scale are preferential pathways of lateral and vertical degassing,
for example, [10,13–15]. Important mechanisms driving fluid flow and keeping fractures open
are compressive stress, volume changes of pore fluid or the rock matrix, and fluid movement or
buoyancy [16].
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CO2 is mainly produced biologically or in equilibrium with carbonate minerals, but also can
originate from mantle degassing or metamorphic processes [17]. He is approximately homogeneous
in the atmosphere [18] because solid Earth degassing and escape of He from the atmosphere are in
equilibrium [19,20]. However, tectonically active zones often exhibit high fluxes of He; active fractures
are highly permeable for He when seismic activity is high [10,21]. Rn forms gas mixtures with other
gases, such as the Rn–CO2 couple, which is considered to be the most probable carrier-gas mechanism
for soil Rn [10,22,23]. The distribution of environmental radon is geologically dependent, varying with
local conditions across relatively small distances.

We previously described close spatial relationships between red wood-ant nests (Formica rufa-group;
henceforth RWA) and tectonic fault zones [24–29]. He and Rn in RWA nests exceeded atmospheric
and background concentrations [24,25], and nests are associated with fault-related CH4 degassing [28].
RWA nests also are “hot spots” for CO2 emissions in European forests, increasing their heterogeneity of
soil C emissions [30–33]. Wu et al. [34] showed that nests of the ants Lasius flavus, L. niger and F. candida
contributed measurable emissions of CO2 (7%) and N2O (3.4%) from wetland soils.

Here, we describe associations between carrier-trace-gas couples (CO2-He and CO2-Rn),
fluctuations and degassing rhythms, earth tides, and meteorological and tectonic processes, in three
different environments: ambient air (AA), soil gas (SG) and RWA nest gas (NG), to help identify
unknown degassing faults at the Goloring site in the Neuwied Basin. Bi-weekly sampling was executed
during a 7-month campaign (‘7-M’; 1 March–30 September 2016). During one month of this campaign,
we intensively sampled SG1-SG7, NG, and AA every 8 h (‘4-W’; 12 July–11 August 2016).

We used these associations to test whether: (a) associations between NG and SG concentrations
indicated actively in situ degassing faults trapping migrating geogases from deep underground
(Figure 1); (b) NG and SG fluctuations in soil and nest were affected by external agents (earth tides,
earthquakes, or meteorology); and (c) SG and NG concentrations were associated with those of three
nearby degassing mineral springs [35].

Figure 1. Schematic diagram (not to scale) showing the basic structural elements of a principal fault
zone with a red wood ant (RWA) nest (brown triangle) and exemplar nest gas (NG) and soil gas (SG)
probes (not to scale). Yellow bubbles indicate gases migrating upward through the fault network.
Variation in structure along and between faults is common; damage intensity and thickness of the
damaged zone vary laterally towards the core zone. Depending on positions of SG probes within the
damaged zone, fluid flow and degassing may be limited (modified after [36]).
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We found that NG appears to be associated with SG indicating fault-related micro-seepage of
geogases; the degassing rhythm between the soil and nest is associated with degassing rhythms
of three nearby mineral springs; and that degassing patterns are independent of earth tides and
meteorological conditions.

This study is part III of the research project “GeoBio-Interactions” in which we also monitored
geochemistry of three mineral waters ≈6 km from the Goloring site [35] and the association of RWA
nests and fault-related CH4 degassing at Goloring [28].

2. Methods

2.1. Study Area

The Goloring site (Figure 2a), with its Iron age henge sanctuary (Figure 2b), is located southeast
of the Laacher See volcano, and close to the Ochtendung Fault Zone in the seismically active Neuwied
Basin, which is part of the Quaternary East Eifel Volcanic field (EEVF) in western Germany (Figure 2a).
During the last 700 ka, intensive intra-continental Quaternary volcanism took place in the EEVF, with
its youngest event being a phreato-plinian eruption of the Laacher See volcano ≈12,900 years ago.
Today, the volcanic activity is dormant but not extinct [1,3]. Complex major tectonic and magmatic
processes, such as plume-related thermal expansion of the mantle-lithosphere [2] and reactivation of
Variscan thrust faults due to the present-day compressional stress field oriented in NW-SE direction
affect the study area [5]. Weak to moderate earthquakes, which occur mostly in a shallow crustal
depth (≤ 15 km) with local magnitudes (ML, Richter scale) rarely exceeding 4.0, are concentrated in
the seismically active Ochtendunger Fault Zone (OFZ; Figure 2a; [4]). Berberich et al. [28] provide
a more complete geological, tectonic, and volcanological description of the Goloring study site.
Our Goloring study site is situated in the center of a triangle-shaped study area formed by the three
previously-investigated mineral springs (Flöcksmühle in the Nette river near Ochtendung [hereafter:
‘Nette’], Waldmühle in Mülheim-Kärlich [hereafter: ‘Kärlich’] and ‘Kobern’ in Kobern-Gondorf
(Figure 2a; [35]). No fault zones had been reported and identified previously from the Goloring
study site; local earthquakes magnitude never exceeded ML= 2, and focal depths of earthquakes near
it never exceeded 28 km during our sampling campaign [37].

2.2. Gas Sampling and Geochemical Analyses

We measured gases in ambient air (AA), soil (SG; Figure 2d), and the RWA nest (NG) at the Iron
age henge sanctuary at the Goloring site (Figure 2b) biweekly from 1 March–30 September 2016 (7-M;
16 times) and every eight hours between 12 July and 11 August 2016 (4-W; 83 times), yielding a total
of 2673 gas samples. Gas sampling followed procedures described by Berberich [24] using analytical
equipment and sampling methods described by Berberich et al. [28,35]. Briefly, AA was sampled
at 1 m height, 1 m away from the RWA nest. The stainless-steel RWA nest-gas probe (Figure 2b;
inner diameter 0.6 cm), equipped with a flexible tip attached to a pushable rod and a sealable outlet
for docking sampling equipment, was inserted 1 m into the RWA nest. It remained there, unmoved,
during the entire 7-M (including 4-W) sampling campaign. Before the start of the sampling in March,
the probe was evacuated twice by pushing the rod using a 20-mL syringe. After this, the outlet was
closed to prevent atmospheric influence. Thereafter, the outlet was opened only after docking the
sampling unit to it. Seven permanent soil gas probes (Figure 2c), in locations chosen on information
from previous investigations, were installed to 1 m depth, either ≈ 2 m (SG1), 30 m (SG 2 and 7),
or 60 m (SG 3–6) from the RWA nest (Figure 1c; Hinkle 1994). Occurrences of maximum helium
anomalies (> 11 ppm) in SG3, SG4, and SG6 ≈ 60 m away from the nest could be attributed clearly to
operator error during analyses.
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Figure 2. Location of the Goloring study site (red cross) ≈15 km SE of the Laacher See volcano
within the Neuwied Basin (light yellow area). The map (a) shows tectonic structures (black lines)
and probability density of the earthquake events from 1977–2016 related to the Ochtendunger Fault
Zone (OFZ; rainbow contours showing the hot spots (red color) of earthquake events within the OFZ
rarely exceeding local magnitude of 4.0; modified after [28]). The inset shows the location of the study
site within Germany. CO2, He, and Rn were sampled at the Goloring site with its Iron-aged henge
sanctuary from a RWA nest, soil, and the ambient air; no fault zones had been reported and identified
previously from the Goloring study site (b). Photographs show (c) the permanent nest gas probe
(white arrow) and the RWA nest, (d) example of a permanent soil gas (SG1) probe with marked flag,
and (e) the meteorological station (all photographs: G. M. Berberich).
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2.3. External Factors

We used data on earthquakes, Earth tides, and meteorological conditions (Figure 2e) (published
by Berberich et al. [28].

2.4. Data Analysis

All analyses were done using R version 3.3.2 (R Core Team 2016, www.R-project.org) or MATLAB
R2017a (www.mathworks.com).

We used the “median + 2MAD” method [38] to separate true peaks in gas concentrations from
background or naturally-elevated concentrations: any observation greater than the overall median
+ 2MAD was considered a peak concentration [38]. For interpreting the significance of the correlation
coefficient, we followed Hinkle et al. [39].

Analysis of fluctuations followed Berberich et al. [35]; cross-correlation analyses were used to
investigate temporal relations between degassing patterns of sampled springs and carrier-tracer
gas relations.

Because meteorological variables were strongly correlated, we used principal component analysis
(R function prcomp) on centered and scaled data to create composite “weather” variables (i.e., principal
axes) that were used in subsequent analyses.

We used modified Fourier analysis (sampling rate = 8; Matlab 2017a) of the 4-W gas (NG, SG) and
Earth-tide data [40] to test for temporal rhythms. Because the observation interval corresponds to an
infinite signal multiplied by a rectangular window, a Blackman window [41] was applied to suppress
the side lobes of the rectangular window. Because average degassing produced a large peak in the
origin of the amplitude spectrum, this peak was removed to reveal any low-frequency components
due to the main lobe of the window function [28].

2.5. Availability of Data

Data are available from the Harvard Forest Data Archive (http://harvardforest.fas.harvard.edu/
data-archive), dataset HF-311.

3. Results

3.1. Gases in Ambient Air, Soil, and the RWA Nest

3.1.1. CO2

Almost all CO2 concentrations in NG and SG were above the threshold value (Median + 2MAD)
during the 7-M and 4-W campaign. Median values of CO2 were different for all environments.
The highest median concentrations were found in the soils: SG1 (7-M: 5.30; 4-W: 8.8 Vol. %) and
SG5 (7-M: 10.0; 4-W: 12.5 Vol. %); maximum concentrations ranged from 0–15 Vol. %. Median CO2

in NG was 0.0–0.4 Vol. %, and it was at 0.0 Vol. % in AA throughout the sampling (Table 1). Three
different anomaly classes (after Sauer et al. [42]; Table 2) were identified for CO2 concentrations in the
environments: (1) < 1 Vol. % (AA and NG), (2) 1–9.99 Vol. % (SG1–4,6,7) and (3) > 10 Vol. %: (SG1, 5).

www.R-project.org
www.mathworks.com
http://harvardforest.fas.harvard.edu/data-archive
http://harvardforest.fas.harvard.edu/data-archive
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Table 1. Gas concentrations in ambient air (AA), NG, and SG for (a) 7-M and (b) 4-W samples.

7-M (bi-weekly; 01.03.–30.09.2016) (a) 4-W (8-hrs. 12.07.–11.08.2016) (b)

N Mean Median Min Max SD Median + 2MAD N Mean Median Min Max SD Median + 2MAD

AA
CO2 (Vol. %) 16 0.00 0.00 0.00 0.00 0.00 0.00 83 0.01 0.00 0.00 0.90 0.10 0.05

He (ppm) 16 5.18 5.20 5.03 5.32 0.09 5.33 83 5.16 5.24 1.79 5.54 0.47 5.55
Rn (BqL−1) 16 0.31 0.11 0.00 3.07 0.74 0.80 83 0.43 0.35 0.05 1.64 0.29 0.79

NG
CO2 (Vol. %) 16 0.20 0.00 0.00 0.80 0.30 0.50 83 0.64 0.40 0.00 10.80 1.56 1.58

He (ppm) 16 5.11 5.17 4.09 5.27 0.28 5.45 83 5.17 5.22 2.90 5.85 0.32 5.49
Rn (BqL−1) 16 1.77 1.63 0.05 6.06 1.53 3.90 83 5.85 5.09 0.19 15.65 4.39 12.57

SG 1
CO2 (Vol. %) 16 5.97 5.30 3.20 10.40 2.27 8.94 83 8.76 8.80 3.60 11.00 1.51 11.06

He (ppm) 16 5.12 5.19 4.55 5.32 0.18 5.45 83 5.08 5.15 1.71 5.69 0.46 5.48
Rn (BqL−1) 16 86.30 100.49 11.07 138.33 33.75 156.46 83 64.50 67.03 0.32 96.81 17.91 89.25

SG 2
CO2 (Vol. %) 16 3.58 3.20 0.60 6.60 1.72 5.79 83 4.06 4.20 0.80 5.80 0.88 5.29

He (ppm) 16 5.23 5.21 5.11 5.45 0.09 5.37 83 5.21 5.21 5.07 5.35 0.06 5.30
Rn (BqL−1) 16 19.78 20.74 5.89 29.68 6.83 31.81 83 12.77 12.56 0.10 59.79 6.59 18.97

SG 3
CO2 (Vol. %) 16 0.90 0.40 0.00 6.00 1.56 2.23 83 1.12 1.20 0.00 1.60 0.18 1.45

He (ppm) 16 5.12 5.12 4.63 5.50 0.22 5.41 83 5.21 5.19 4.60 10.40 0.62 5.56
Rn (BqL−1) 16 2.96 2.64 0.68 7.17 1.61 5.04 83 3.92 3.40 0.19 43.66 4.85 7.13

SG 4
CO2 (Vol. %) 16 2.50 2.40 0.60 4.20 1.13 4.33 83 3.70 3.80 1.40 4.40 0.48 4.42

He (ppm) 16 5.16 5.18 4.75 5.35 0.13 5.34 83 5.29 5.18 1.77 11.18 0.99 5.82
Rn (BqL−1) 16 113.83 118.00 53.75 162.90 33.28 172.76 83 92.38 98.58 23.81 145.71 26.99 141.84

SG 5
CO2 (Vol. %) 16 10.39 10.00 6.40 15.00 2.48 14.00 83 12.77 12.50 3.60 14.90 1.30 13.89

He (ppm) 16 5.01 5.06 4.50 5.23 0.21 5.32 83 5.12 5.11 4.76 5.54 0.11 5.27
Rn (BqL−1) 16 74.46 79.87 40.68 99.79 16.18 107.16 83 55.17 57.28 12.47 74.91 12.63 76.41

SG 6
CO2 (Vol. %) 16 0.75 0.60 0.00 1.80 0.51 1.39 83 1.05 1.00 0.00 1.40 0.24 1.36

He (ppm) 16 5.16 5.15 5.00 5.25 0.07 5.25 83 5.25 5.17 4.88 11.10 0.67 5.50
Rn (BqL−1) 16 8.65 7.87 2.78 14.31 3.09 12.67 83 11.69 10.63 0.72 64.55 8.43 17.48

SG 7
CO2 (Vol. %) 16 3.95 3.80 1.80 6.60 1.46 6.14 83 4.61 4.60 3.20 6.40 0.91 6.12

He (ppm) 16 5.20 5.20 4.93 5.55 0.15 5.39 83 5.10 5.16 1.69 5.33 0.40 5.42
Rn (BqL−1) 16 48.29 41.04 0.13 94.42 27.51 89.05 83 32.17 31.17 0.57 69.08 12.51 50.26
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Table 2. Concentration classes of gases for AA, NG and SG for the 4-W sampling. CO2 classes after
[42]; atmospheric He after [18]; and Rn background concentrations after [43] and [44].

Classes AA NG SG1 SG2 SG3 SG4 SG5 SG6 SG7

(a) CO2 (Vol. %) 1

I: <1 100.0 96.4 0.0 0.0 2.4 0.0 0.0 1.2 0.0
II: 1–9.99 0.0 2.4 74.7 100 97.6 100 1.2 97.6 100
III: >10 0.0 1.2 25.3 0.0 0.0 0.0 98.8 1.2 0.0

Sum (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(b) He (ppm)

I: <5.22 2 (undisturbed background levels) 39.8 50.6 84.3 60.2 59.0 77.1 85.5 80.7 86.7
II: 5.22–5.29 48.2 38.6 12.0 33.8 30.1 14.5 10.8 15.7 12.0
III: 5.30–5.39 9.6 7.2 1.2 6.0 9.6 2.4 1.2 1.2 1.3
IV: 5.40–5.59 2.4 2.4 1.2 0.0 0.0 2.4 2.5 0.0 0.0

V: >5.60 0.0 1.2 1.3 0.0 1.3 3.6 0.0 2.4 0.0
Sum (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Sum (%) >5.22 ppm 60.2 49.4 15.7 39.8 41.0 22.9 14.5 19.3 13.3

(c) Rn (BqL−1)

I: <20 (background concentration) 3 100 100 3.6 98.8 98.8 0.0 1.2 96.3 15.7
II: 20–39.9 (low-moderate) 3 0.0 0.0 3.6 0.0 0.0 4.8 9.6 0.0 57.8

III: 40–99.9 (increased with locally high
potential > 100 BqL−1) 3 0.0 0.0 92.8 1.2 1.2 49.3 89.2 3.7 26.5

IV: >100 (locally high potential) 4 0.0 0.0 0.0 0.0 0.0 45.9 0.0 0.0 0.0
Sum (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1 Concentration classes according to [42]; 2 Atmospheric standard: 5.2204 ±0.0041ppm [18]; 3 Background
concentration [43]; 4 Rn potential classes [44].

3.1.2. He

He concentrations higher than the atmospheric standard (5.22 ppm; Davidson and Emerson 1990)
indicated tectonic influence were recorded in NG (49%), AA (60%), SG2 and SG3 (≈40%), SG4 and SG6
(≈20%), and SG1, SG5 and SG7 (≈14%; Table 2). In the 7-M samples, maximum He concentrations
of ≈5.50 ppm occurred in SG2, 3, and 7 (Table 2). In the 4-W samples, nearly all He concentrations
in NG and SG exceeded atmospheric standard; maximum concentrations occurred in SG3, 4, and 6
(>11 ppm), NG (5.85 ppm), and AA (5.54 ppm).

3.1.3. Rn

In the 7-M samples, maximum Rn concentrations in AA, NG, SG3, SG6, SG7 were above the
threshold value (Median + 2MAD; Table 1). Peak concentrations occurred in SG4 (163 BqL−1), SG1 (138
BqL−1), SG5 (100 BqL−1) and SG7 (94 BqL−1; Table 1). In the 4-W samples, Rn concentrations were
highest in SG4 (146 BqL−1), SG1 (97 BqL−1), SG5 (75 BqL−1) and SG 7 (70 BqL−1). Rn concentrations
in NG (7-M: ≈7 BqL−1; 4-W: ≈16 BqL−1), SG 2, and SG3 were at or below background levels (Table 2).

3.2. Time Series

3.2.1. Fluctuations in Gas Concentrations

Gas fluctuation patterns were observed in all samples in all environments (Figure 3). SG and NG
concentrations varied by an order of magnitude in the 7-M samples (e.g., CO2 in SG5: 6–15 Vol. %;
Rn in SG4: 54–163 BqL−1; and Rn in NG: 0.1–6 BqL−1) and in the 4-W samples (e.g., CO2 in NG:
0–11 Vol. %; Rn in SG7: 0.6–69 BqL−1), but amplitudes of gas fluctuations were lower in the 4-W
samples (Figure 3).
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Figure 3. Fluctuation patterns of gas concentrations (centered and scaled data) in (a) 7-M and (b) 4-W
samples in nest gas (NG; green line), soil gas (SG 1-7: SGmean; orange line), and mineral springs (other
colors; from [35]); earthquake events (ML) are indicated with purple crosses.

Variations in CO2 and He in SG were strongly correlated (r = 0.71–0.94; Figure 3a,b,d,e;
Appendix B, Figures A3 and A4). High (r = 0.81–0.84) to moderate (r ≈ 0.63) correlations in Rn
variations were observed in SG 1, 2, 5 and 7 (Figure 3c,f; Appendix B, Figure A5). NG and SG
fluctuations were moderately correlated (r ≈ 0.58) for CO2 in the 4-W samples (Appendix B, Figure A3).
Moderate correlations (r ≈ 0.55) were identified between He variations in AA in the 4-W samples
(Appendix B, Figure A4).

3.2.2. Temporal Variations of Concentrations and Carrier-Trace Gas Couples in SG and NG

Cross-correlations were weakly positive between CO2 in NG and SGmean (SG1–7) with a time
lag of ≈1 day, and moderately negative between He in NG and SGmean with a time lag of ≈8 h
(Figure 4a). Cross-correlations between CO2 and He in NG and AA were strong with a time lag of
≈4 days (Figure 4b). No cross-correlations were found for Rn among the samples.
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Figure 4. Cross-correlations of the time series of (a) NG vs. SGmean and (b) NG vs. AA for the 4-W
samples. Blue dashed lines indicate confidence thresholds.

Joint visualization of the time series of carrier-trace gas couples revealed differences between
NG and SG. A coupled system of CO2-He is visible in NG (lag = 1 day) and in SG6 (lag = −4 days).
The cross-correlation for the CO2-He couple in all other SG never exceeded 0.4 (Figure 5a). A CO2-Rn
coupled system was visible in SG6 (instantaneous) and SG 7 (lag = −1 day). In all other environments,
the cross-correlation was low (0.4) for the CO2-Rn couple (Figure 5b).

Figure 5. Cross-correlations of time-series of (a) CO2 vs. He and (b) CO2 vs. Rn (8-hour median
smoothed) in NG and SG from the 4-W samples. Blue dashed lines indicate confidence thresholds.
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3.2.3. Fourier Analysis

Common synchronous infradian degassing rhythms of CO2, He, and Rn were observed in the
4-W samples of AA, NG, and SG after 2, 3, 4 and 6 days (Figure 6; Appendix C). There was no common
CO2 maximum peak (Figure 6a; Appendix C, Table A1). Common He maxima occurred at 7 (NG,
SG2), 22 (SG5–SG7), 30 (SG1) and 45 days (SG3; Figure 6b; Appendix C, Table A2), whereas common
Rn maxima were observed for 15 days (AA, SG7; Figure 6c; Appendix C, Table A3). At a period of
45 days, Rn maxima were observed only in SG4 (Appendix C, Table A3). Earth tides peaked at periods
of 0.5 days and 1 day (Figure 6d).

Figure 6. Results of the modified FFT (Fast Fourier Transform) analysis for the degassing patterns of
(a) CO2, (b) He, (c) Rn in AA, NG and SG 1–SG7 in the 4-W samples and (d) earth tides.

3.3. External Factors

Stable meteorological conditions persisted during the campaign [28]. The degassing processes
from NG and SG did not appear to be associated with meteorological conditions (Appendix A,
Figures A1 and A2).

Forty-three small-scale earthquakes (ML −0.7–1.8; depth: 1–26.7 km) occurred during the 7-M
sampling interval and five during the 4-W sampling interval (ML −0.1–1.4; depth: 3–11.5 km; [28]).
For the 7-M samples, we observed no association between earthquakes and gas concentrations. For the
4-W samples, declines in CO2 (SGmean), He (NG, SGmean), Rn (SGmean) fluctuation were observed
visually before the earthquake at Nickenich on 3 August (ML 0.7; Depth 7 km) 11.7 km from the
Goloring site (Figure 3d–f). After this earthquake, a significant rise in Rn fluctuation was observed in
SGmean and NG (Figure 3f).

Associations of semi-diurnal Earth tides with all gases from AA, NG and SG differed in the 7-M
and 4-W samples (Appendix B, Figures A3–A5). Positively high (≈0.85; SG4, SG6) and moderate
(0.57; SGmean) associations of Earth tides with CO2 fluctuation patterns were observed in the 7-M
samples. A high negative influence of Earth tides on He was found for SG4 (−0.73; 7-M samples) and
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SG6 (−0.78; 4-W samples), whereas the relationship was strongly positive for Rn and Earth tides in
SG6 (0.79; 7-M samples) and SGmean (0.75; 4-W samples). Correlations between Earth tides and AA
and NG were weak.

4. Discussion

4.1. Gases in Ambient Air, Nest and Soil

This is the first time that AA, NG and SG samples have been monitored in parallel in a long-term
survey in the Neuwied Basin. The continual bi-weekly and 8-hour sampling intervals generated a
robust geochemical data set for the Goloring site. Prior geochemical analyses in the EEVF were based
only on annual [8] and short-term surveys of soil gases (4 days, [9]; Appendix G).

4.1.1. CO2

Ohashi et al. [32] and Risch et al. [30] found that RWA nests are point sources of CO2 by measuring
CO2 fluxes from RWA nests at 10-cm maximum depth. Ohashi et al. [32] suggested that surficial CO2

emissions from RWA nests originate from: (1) respiration processes of RWAs and other invertebrates
within the nest; (2) root respiration by vascular plants within or beneath the nest; and (3) microbial
decomposition of nest material. According to Hinkle [45], surficial gas samples from 0.0–0.8 m are
influenced by the atmosphere. We took gas measurements at 1-m depth without atmospheric influence
and the maximum NG concentrations (10.8 Vol. %; 2016) were comparable to others we took in June
2010 (≈15.0 Vol. %; Appendix G). CO2 degassing (measured at 1-m depth) from 2–100 Vol. % can derive
from deep fault zones and may be related to recent or post-volcanic metamorphic processes in carbonate
rocks [46]. Our findings are comparable to ones of the Arabia Fault (8.2 Vol. %), and Terme S. Giovanni
(18.1 Vol. %), a main thermal spring at the Rapolano Fault within the Neogene Siena-Radicofani Basin
(Central Italy; [47]). We conclude that the NG results imply that the RWA nest is located above the
fault core zone and indicate a degassing vent at the study site (Figure 1).

Most of the SG concentrations are slightly elevated, but the very high levels in SG5 and SG1
indicate CO2 anomalies (following [42]). Although higher ones have been reported (e.g., [9]), these are
comparable to those recorded from the actively degassing Rapolano Fault [47] and therefore may be
associated with an actively degassing but unknown fault on the Goloring site. Median concentrations
were comparable to findings of actively degassing vents by Gal et al. [9] for the Laacher See pasture
and Obermendig site, and to random samplings on the Goloring site (Appendix G).

4.1.2. He

He concentrations lower than the atmospheric standard of 5.22 ppm ([18]; class I in Table 2) are
considered to represent undisturbed background levels [48]; all other anomaly classes (II-V; Table 2)
indicate tectonic influences.

He concentrations exceeding the atmospheric standard of 5.22 ppm ([18]; Table 2) were twice as
high in NG than in SG in the 4-W samples, lending further support for the RWA nest being located
above the core fault zone (Figure 1). The high NG concentrations support the notion that RWA nests
are useful biological indicators for degassing faults at small, local scales [24,25,28]. This conclusion
is further supported by the temporal analyses that indicate a coupled system of CO2-He in NG.
Tectonically active zones are known for high He fluxes through permeable fractures. Compressive
stress and seismic activity maintain permeabilities and lead to gas anomalies at the surface [10,16,49].

Differences between NG and SG1 concentrations may be attributed to different soil characteristics,
different basement geology [9], variation in structure, damage intensity, and thickness along and
between faults [36] or even to an unknown fault separating both locations. SG1, SG5, and SG7 probably
are located on a less developed fault segment, for example, in the damaged zone, so that there is less
permeability for fluid flow and degassing (Figure 1). Faults exhibiting minor gas emissions are often
synthetic faults that root into main faults [50].
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It was not possible to verify the validity of He concentrations below the atmospheric standard or
its concentrations in AA. Such a validation of these low values would require a follow-up study to
assess sampling or analytical errors.

4.1.3. Rn

Although Rn concentrations at the Goloring site in AA and NG were within the background value
(< 20 BqL−1; [43]), SG concentrations were up to 8-fold higher. Median SG concentrations differed
up to 23-fold among sampling locations, confirming non-stationary variation in soil or bedrock at
small scales [51]. In total, maximum Rn concentrations in SG at the Goloring site were up to 5-fold
(7-M samples) or 2-fold higher (4-W samples) than those reported by Gal et al. [9] (Appendix G),
indicating an increased Rn potential with a locally high potential (> 100 BqL−1) for the Goloring
site [44]. Local high Rn anomalies (> 100 BqL−1) are associated with tectonic fault zones and clefts
caused by advective gas transport along faults between the interbedding layers of Lower Devonian
clay and siltstone bedrocks and the Cenozoic sediment basin fillings [52,53]. These concentrations
also are comparable to hazardous sites along the Rapolano Fault [47]. The small-scale variability
in Rn degassing at Goloring can be attributed to a linear fault-linked anomaly [10,13], suggesting a
degassing in the NE-SW direction (Variscan direction) and the NW-SE direction (corresponding to the
present-day main stress direction; [5]). Both accord with the local “Radon-Potential Map” [44]. Our
data augment this “Radon-Potential Map”, complement knowledge of Rn anomalies in the Neuwied
Basin, and extend information on geogenic radon potential for this area.

4.2. Time Series

Bi-weekly NG and SG samples were more variable than 4-W samples in the three environments.
This supports our conclusion that results derived from samples taken at long intervals may lead to
erroneous conclusions [28]. For example, Griesshaber [54] and Clauser et al. [7] concluded from annual
samples that CO2 is the primary carrier in the Eifel fluid-rock system. Results of our higher-frequency
samples cannot confirm this; we could only identify a CO2-He coupled system in NG and SG6 and
a CO2-Rn coupled system in SG6 and SG7. Elsewhere, we hypothesized that geogenic gases in this
part of the Neuwied Basin might be transported by another carrier gas, such as N2 ([28]; see also
Bräuer et al. [8]). Bräuer et al. [8] found N2 to be a carrier gas at the periphery along the Rhine. Future
investigations throughout the Neuwied Basin should investigate the N2-He carrier-trace gas couple
also in soil gas samples.

4.3. External Factors

4.3.1. Meteorological Conditions

The degassing processes from NG and SG did not appear to be influenced by meteorological
conditions (cf. [9,45,55,56]). Additionally, our results do not support the hypothesis that temperature is
a dominant controller of CO2 production (cf. [57]). The reason for these differences could be related to
the frequency of measurements. We monitored them continuously on site where as others used daily
values recorded at distant meteorological stations [9,57].

4.3.2. Earthquakes

We observed no effects of earthquakes on gas concentrations in the biweekly (7-M) samples. This
is attributable to either: (a) the small size of the earthquakes; (b) their large distance (>10 km) from the
Goloring site; or that (c) biweekly sampling intervals missed the influence of the small earthquakes.
Alternatively, evidence of seismic influence on fluctuation patterns were observed after the earthquake
that occurred on 3 August 2016 at Nickenich (≈11 km) while we were sampling every 8 h. The decline
of CO2, He, and Rn concentrations in NG and SG observed ≈1 day before the earthquake can be
explained by: (1) an increase in compressive stress; (2) volume changes of the pore fluid or rock matrix;
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or (3) a permeability change of conduits at the nest and soil sample locations [16,49]. As there was
only one such nearby event, however, we cannot assert that there is a general relationship between
earthquakes and nest or soil gas concentrations. The recent occurrences of deep earthquakes that
are related to magmatic processes at the lower crust suggest continuous monitoring in this youngest
volcanic field in Germany. Such data also would help assess relationships between gas flux dynamics
and earthquake events in the Neuwied Basin.

4.3.3. Earth tides

Deformations of the Earth’s crust by Earth tides are associated with cyclic variations in water-table
levels within the rock strata and have been suggested to influence gas concentrations (e.g., Rn; [23,58]).
Though all NG and SG probes were ≤ 60 m from one another, we only observed an effect of Earth tides
on the fluctuation patterns in 25% of the probes for the 7-M samples. This result could be explained
by: (1) the 8-hour sampling interval being too long to capture effects of semi-diurnal earth tides; (2)
the study area being too far away from coastlines, ameliorating influences of Earth tides; or (3) in the
case of Rn, the emanating layer being located too deeply so that any pumped Rn is diluted during
migration [23].

4.4. Comparison with Mineral Springs Nette, Kärlich and Kobern

A comparison of NG and SG concentrations with previously-investigated gas concentrations
in nearby mineral springs [35] showed similar median He concentrations in SG, NG, and Kobern
(Appendix D). We observed highly or very highly (CO2) to moderate (He) correlations in SGmean and
concentrations at Nette, Kärlich, and Kobern (Appendix B, Figures A3 and A4). Similar median Rn
concentrations were found for SG and Nette, Kärlich, and Kobern, suggesting degassing at Goloring
site and the three springs are linked either by a similar Rn source in the subsurface or by an unknown
fault system.

CO2 fluctuations in SGmean and Nette and Kärlich mineral springs are directly and instantaneously
linked. Correlations of He between SGmean and Nette indicate a linkage in NW-SE direction and
between SGmean and Kärlich an additional linkage in NE-SW direction (Appendix E). This linkage
between SG at Goloring site and the minerals springs is supported further by cross-correlations
(Appendix F): SGmean and Nette (lag ≈ 16 h) and Kärlich (lag ≈ 40 h) are either directly linked or
positively correlated with respect to CO2. Moderate cross-correlation between SGmean and Nette for
He was observed (lag ≈ 3 days). Relations between NG and Nette and Kärlich (lag ≈ 80 h) were small
and positive for CO2 and small and negative for He (lag ≈ 80 h to 5 days). NG and Kobern were
related with a lag of ≈ 88 h for He. No to only low relations were observed for Rn between NG and
the three springs (Appendix F).

Degassing rhythms in NG and SG were equivalently periodic and exhibited infradian rhythms of 2,
3, 4, and 6 days. The same infradian rhythms were found for the three mineral springs investigated [28].
These results support our conclusion that there are tectonic linkages between Goloring and Nette in the
NW-SE direction (present-day stress field) and between Goloring and Kärlich in the NE-SW (Variscan
fault direction) directions [28].

The volcanic activity in the EEVF is dormant but not extinct. Furthermore, information on active
tectonic fault zones is missing in the EEVF and especially in the Ochtendunger Fault Zone. Monitoring
of geogenic gases suggesting statistical bias when samples are taken at large temporal intervals.
Therefore, we recommend daily soil gas samplings for a minimum of one year to understand—in
combination with the recommended mineral water sampling—the EEVF’s tectonic, magmatic and
degassing system also in relation to new developments in earthquake processes which are related to
magmatic processes in the lower crust.
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5. Conclusions

Combined analyses of ambient air (AA), ant-nest gases (NG), and soil gases (SG) measured in
situ from 1 March–30 September 2016 were evaluated to determine composition, fluctuation patterns,
temporal variations, degassing rhythms, and carrier-trace gas couples of geogenic gases (CO2, He, Rn,)
and compared to gas concentrations in three nearby mineral springs. Results of continual sampling
during 7 months (bi-weekly) and 4 weeks (every 8 h) were:

He concentrations in NG were above the atmospheric standard. A coupled CO2-He system
supported the hypothesis that red wood-ant nests can be used as biological indicators for actively
degassing faults.

Radon anomalies in SG with peak concentrations of 163 BqL−1 identified a high local Rn potential
for the Goloring site and conributed to the Radon potential map of LGB-RLP 2017 [44].

Equivalently periodic degassing infradian rhythms in the red wood-ant nest, soil, and three
nearby minerals springs suggested a NW-SE tectonic linkage between Goloring and Nette spring and
a NE-SW tectonic linkage between Goloring and Kärlich spring.

Meteorology and low-magnitude local earthquakes did not modulate degassing at Goloring.
Analyses of fluctuation patterns revealed that only 25% of the probes were affected by Earth tides.
Earth tides were associated with soil degassing of CO2, He, and Rn only in biweekly samples,

suggesting statistical bias when samples are taken at longer temporal intervals.
Because volcanic activity in the EEVF is dormant, more detailed information on active tectonic

fault zones is needed in the EEVF, especially in the Ochtendunger Fault Zone. We recommend
continuous monitoring of geogenic gases in soil and RWA nests—in combination with the
recommended mineral water sampling and isotopic investigations—for a minimum of one year
to understand the EEVF’s tectonic, magmatic, and degassing systems in relation to new developments
in earthquake processes that are related to magmatic processes at the lower crust.

Furthermore, electrical measurements, for example, between the tips of the probe in the nest on
the fault and between other ones in the soil tens of meters away, could provide information about
fluctuations of electronic charge carriers, which would be stress-activated at depths below, before,
or during earthquakes.

Author Contributions: G.M.B. conceived the idea, designed the study, performed the field work, carried out the
statistical analysis and wrote the manuscript. M.B.B. performed the field work, analyzed the data and contributed
to the manuscript. A.M.E. and C.W. analyzed the data and contributed to the manuscript. All authors edited the
manuscript and approved the final version.

Funding: The study is part of the research project “GeoBio-Interactions” funded by the Volkswagen Stiftung
(grant numbers Az 93 403 and Az 94 626) within the initiative “Experiment!” – Auf der Suche nach gewagten
Forschungsideen. The Volkswagen Stiftung had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Acknowledgments: We thank Hayley Simpson, Alfredo Román Tejeda and Stanley Obamwonyi (all MSc students
at University of Duisburg-Essen), and Mark Schumann, Felix Dacheneder and Thomas Evert (employees at
University of Duisburg-Essen) for gas sampling and analyses. Gas analyses were done using equipment from
the department of Geology at University of Duisburg-Essen. We thank Peter Henrich (Leiter der Direktion
Landesarchäologie - Außenstelle Koblenz) for his permission to conduct the survey on the Goloring site,
and Hans-Toni Dickers, Paul Görgen and Bernd Klug from Kuratorium für Heimatforschung und -pflege,
Kobern-Gondorf for logistical support during the field campaign.

Conflicts of Interest: The authors declare no conflict of interest.



Insects 2018, 9, 135 15 of 25

Appendix A

Figure A1. Correlation coefficients of the principal components analysis of weather variables with
geogenic gas concentrations for (a) CO2, (b) He, and (c) Rn for AA, NG, SG, and the three mineral
springs for the 7-M samples; W-PC1 = Weather-PC1.
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Figure A2. Correlation coefficients of the principal components analysis of weather variables with
geogenic gas concentrations for (a) CO2, (b) He, and (c) Rn for AA, NG, SG, and the three mineral
springs for the 4-W samples; W-PC1 = Weather-PC1.
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Appendix B Annex 2a  Correlation  coefficients  between CO2  fluctuation  patterns  in NG,  SG,  SGmean, mineral 
springs,  and  Earth  tides  (ET)  for  the  7‐M  and  4‐W  samples.  Correlations  >0.70  are 
shaded. Correlations 0.5–0.7 are marked in bold‐italic; n.a. = not available.  

7‐M: CO2 

SG1  1                           

SG2  0.84  1                         

SG3  0.43  0.54  1                       

SG4  0.89  0.82  0.75  1                     

SG5  0.94  0.85  0.41  0.84  1                   

SG6  0.90  0.80  0.58  0.94  0.78  1                 

SG7  0.85  0.81  0.21  0.69  0.73  0.84  1               

NG  ‐0.39  ‐0.63  ‐0.37  ‐0.39  ‐0.46  ‐0.38  ‐0.33  1             

AA  n.a.  n.a.  n.a.  n.a.  n.a.  n.a.  n.a.  n.a.             

Nette  ‐0.42  ‐0.47  0.05  ‐0.19  ‐0.47  ‐0.26  ‐0.51  0.41  n.a.  1         

Kärlich  ‐0.44  ‐0.43  0.14  ‐0.14  ‐0.44  ‐0.25  ‐0.53  0.48  n.a.  0.92  1       

Kobern  ‐0.70  ‐0.65  ‐0.51  ‐0.74  ‐0.67  ‐0.73  ‐0.73  0.10  n.a.  0.35  0.21  1     

SGmean  0.98  0.89  0.49  0.93  0.92  0.95  0.88  ‐0.41  n.a.  ‐0.39  ‐0.38  ‐0.75  1   

ET  0.67  0.61  0.32  0.89  0.58  0.81  0.54  0.19  n.a.  ‐0.15  ‐0.12  0.08  0.57  1 
  SG1  SG2  SG3  SG4  SG5  SG6  SG7  NG  AA  Nette  Kärlich  Kobern  SGmean  ET 

 

4‐W: CO2 

SG1  1                           

SG2  0.68  1                         

SG3  ‐0.06  0.55  1                       

SG4  0.91  0.63  0.05  1                     

SG5  0.71  0.85  0.34  0.68  1                   

SG6  0.53  0.61  0.54  0.62  0.46  1                 

SG7  0.13  ‐0.31  ‐0.26  0.10  ‐0.23  ‐0.17  1               

NG  0.17  0.61  0.61  0.11  0.55  0.18  ‐0.09  1             

AA  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1           

Nette  0.71  0.41  ‐0.18  0.70  0.50  0.09  0.25  0.14  0.00  1         

Kärlich  0.86  0.53  ‐0.22  0.71  0.59  0.28  0.13  0.20  0.00  0.65  1       

Kobern  0.26  ‐0.23  ‐0.55  0.16  ‐0.20  ‐0.13  0.52  ‐0.42  0.00  0.12  0.35  1     

SGmean  0.93  0.71  0.11  0.83  0.74  0.54  0.24  0.30  0.00  0.66  0.79  0.18  1   

ET  0.06  ‐0.17  0.32  ‐0.30  0.44  ‐0.09  0.01  0.45  0.51  0.52  0.07  0.08  0.05  1 
  SG1  SG2  SG3  SG4  SG5  SG6  SG7  NG  AA  Nette  Kärlich  Kobern  SGmean  ET 

 

Figure A3. Correlation coefficients between CO2 fluctuation patterns in NG, SG, SGmean, mineral
springs, and Earth tides (ET) for the 7-M and 4-W samples. Correlations >0.70 are shaded. Correlations
0.5–0.7 are marked in bold-italic; n.a.: not available.

Annex 2b  Correlation coefficients between He fluctuation patterns  in NG, SG, SGmean, mineral 
springs,  and Earth  tides  (ET)  for  the 7‐M and 4‐W samples. Correlations > 0.70 are 
shaded. Correlations 0.5–0.7 are marked in bold‐italic. 

7‐M: He 

SG1  1                           

SG2  0.53  1                         

SG3  0.32  ‐0.10  1                       

SG4  0.28  0.32  0.69  1                     

SG5  0.04  0.62  ‐0.60  ‐0.19  1                   

SG6  0.19  0.14  0.35  0.35  0.00  1                 

SG7  0.25  0.39  0.16  0.43  0.28  0.15  1               

NG  0.31  0.14  0.23  0.06  0.23  0.26  0.60  1             

AA  0.33  ‐0.03  0.10  ‐0.34  ‐0.11  ‐0.32  ‐0.19  0.14  1           

Nette  0.16  0.27  ‐0.17  0.01  0.24  0.64  0.02  0.07  ‐0.44  1         

Kärlich  0.11  0.53  ‐0.25  0.16  0.27  0.39  ‐0.04  ‐0.20  ‐0.40  0.75  1       

Kobern  0.31  ‐0.20  0.31  ‐0.06  ‐0.34  ‐0.33  ‐0.15  0.03  0.42  ‐0.59  ‐0.53  1     

SGmean  0.79  0.70  0.27  0.42  0.24  0.55  0.38  0.34  0.10  0.47  0.44  ‐0.12  1   

ET  ‐0.05  ‐0.39  ‐0.36  ‐0.73  ‐0.25  ‐0.27  ‐0.17  ‐0.47  ‐0.33  ‐0.52  0.02  0.41  0.00  1 
  SG1  SG2  SG3  SG4  SG5  SG6  SG7  NG  AA  Nette  Kärlich  Kobern  SGmean  ET 

 

4‐W: He 

SG1  1                           

SG2  0.59  1                         

SG3  0.24  0.58  1                       

SG4  0.34  0.25  0.37  1                     

SG5  0.35  0.63  0.61  0.20  1                   

SG6  0.10  0.13  0.36  0.09  0.50  1                 

SG7  0.41  0.40  0.57  0.35  0.56  0.51  1               

NG  0.41  0.54  0.28  0.30  0.56  0.17  0.18  1             

AA  0.64  0.54  0.32  0.54  0.48  0.16  0.35  0.58  1           

Nette  0.71  0.59  0.52  0.55  0.32  0.05  0.30  0.45  0.53  1         

Kärlich  0.72  0.58  0.46  0.50  0.55  0.40  0.53  0.43  0.45  0.76  1       

Kobern  0.04  0.34  0.39  0.27  0.14  ‐0.04  0.10  0.17  0.15  0.12  0.00  1     

SGmean  0.63  0.67  0.76  0.32  0.72  0.53  0.70  0.45  0.54  0.59  0.70  0.15  1   

ET  ‐0.52  0.34  ‐0.35  0.18  0.04  ‐0.78  ‐0.47  0.27  ‐0.50  0.18  0.18  ‐0.08  ‐0.45  1 
  SG1  SG2  SG3  SG4  SG5  SG6  SG7  NG  AA  Nette  Kärlich  Kobern  SGmean  ET 

 
Figure A4. Correlation coefficients between He fluctuation patterns in NG, SG, SGmean, mineral springs,
and Earth tides (ET) for the 7-M and 4-W samples. Correlations > 0.70 are shaded. Correlations 0.5–0.7
are marked in bold-italic.
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springs,  and  Earth  tides  (ET)  for  the  7‐M  and  4‐W  samples.  Correlations  >  0.70  are 
shaded. Correlations 0.5–0.7 are marked in bold‐italic. 

7‐M: Rn 

SG1  1                           

SG2  0.63  1                         

SG3  ‐0.46  ‐0.29  1                       

SG4  0.28  0.60  0.05  1                     

SG5  0.81  0.75  ‐0.48  0.45  1                   

SG6  ‐0.36  ‐0.03  ‐0.39  ‐0.30  ‐0.02  1                 

SG7  0.60  0.84  ‐0.44  0.61  0.65  ‐0.07  1               

NG  0.42  ‐0.01  0.17  ‐0.09  0.22  ‐0.40  ‐0.01  1             

AA  ‐0.25  ‐0.27  0.20  ‐0.14  ‐0.64  ‐0.39  ‐0.21  ‐0.20  1           

Nette  0.18  0.09  ‐0.22  0.33  0.44  ‐0.01  0.07  ‐0.11  ‐0.31  1         

Kärlich  0.41  0.44  ‐0.04  0.61  0.18  ‐0.40  0.65  0.10  0.23  0.04  1       

Kobern  0.56  0.12  0.06  0.11  0.15  ‐0.60  0.01  0.32  0.23  0.09  0.42  1     

SGmean  0.75  0.85  ‐0.40  0.71  0.80  ‐0.12  0.86  0.12  ‐0.34  0.11  0.58  0.25  1   

ET  ‐0.58  ‐0.20  0.17  ‐0.12  ‐0.65  0.79  ‐0.02  0.11  0.37  0.02  0.12  ‐0.48  ‐0.32  1 
  SG1  SG2  SG3  SG4  SG5  SG6  SG7  NG  AA  Nette  Kärlich  Kobern  SGmean  ET 

 

4‐W: Rn 

SG1  1                           

SG2  0.42  1                         

SG3  ‐0.28  ‐0.31  1                       

SG4  ‐0.12  0.02  0.49  1                     

SG5  0.07  0.36  0.19  0.42  1                   

SG6  0.02  0.10  0.00  ‐0.21  0.21  1                 

SG7  0.66  ‐0.02  ‐0.26  ‐0.19  ‐0.11  0.23  1               

NG  0.09  ‐0.01  ‐0.47  ‐0.45  0.00  0.33  0.37  1             

AA  ‐0.63  ‐0.23  0.20  ‐0.03  ‐0.02  0.26  ‐0.35  ‐0.02  1           

Nette  ‐0.10  ‐0.16  0.25  ‐0.04  ‐0.13  ‐0.09  ‐0.12  ‐0.25  0.29  1         

Kärlich  ‐0.52  ‐0.41  0.38  0.40  0.01  ‐0.27  ‐0.47  ‐0.47  0.33  0.44  1       

Kobern  ‐0.09  ‐0.36  0.28  0.31  ‐0.16  ‐0.26  0.01  ‐0.44  0.08  0.19  0.52  1     

SGmean  0.23  0.02  0.43  0.64  0.49  ‐0.17  0.20  ‐0.30  ‐0.10  0.02  0.19  0.12  1   

ET  0.14  0.41  0.41  0.52  0.44  0.02  0.49  ‐0.23  ‐0.28  0.04  ‐0.57  ‐0.57  0.75  1 
  SG1  SG2  SG3  SG4  SG5  SG6  SG7  NG  AA  Nette  Kärlich  Kobern  SGmean  ET 

 
Figure A5. Correlation coefficients between Rn fluctuation patterns in NG, SG, SGmean, mineral springs,
and Earth tides (ET) for the 7-M and 4-W samples. Correlations > 0.70 are shaded. Correlations 0.5–0.7
are marked in bold-italic.

Appendix C

Table A1. Modified Fourier analysis for CO2 in AA, NG and SG 1-7 (4-W samples). Maxima of
amplitude are highlighted in bold.

Days CO2
AA

CO2
NG

CO2
SG1

CO2
SG2

CO2
SG3

CO2
SG4

CO2
SG5

CO2
SG6

CO2
SG7

1
2 0.2 5.0 5.1 2.7 0.5 1.3 1.5 4.2 1.4
3 0.2 6.2 7.2 3.5 0.4 1.6 1.4 4.1 2.3
4 0.2 5.1 9.6 2.5 0.6 1.6 1.5 4.1
5 4.8 4.5 3.6 4.8
6 0.2 3.9 9.4 4.2 0.7 0.7 1.0 4.1 4.2
7 11.1 0.5 1.4 4.0
8 0.2 1.3 4.3
9 4.7 2.3

10 3.1 4.4
11 11.7
12
13 0.2 5.4 0.8 0.5 3.7
14
15 4.2
16
17
18 4.2 1.0 1.3
19
20
21
22 13.8 1.2 4.2
23
24
25
26
27
28
29
30 2.1 5.0
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Table A2. Modified Fourier analysis for He in AA, NG and SG 1-7 (4-W samples). Maxima of amplitude
are highlighted in bold.

Days He
AA

He
NG

He
SG1

He
SG2

He
SG3

He
SG4

He
SG5

He
SG6

He
SG7

1 686.7 433.0 403.9 280.6 701.4 1059.3 307.5 3381.8 565.8
2 676.7 767.0 756.2 405.9 910.4 1370.2 538.6 4115.7 806.3
3 984.0 529.1 691.0 374.0 676.0 1338.3 638.4 5832.6 900.5
4 833.9 694.7 818.6 318.3 828.3 1073.4 622.2 6504.7 574.6
5 784.6 789.5 1.142.4 307.1 837.6 1252.1 817.8 622.1
6 802.0 879.3 1.162.9 491.5 725.8 843.0
7 6.630.6
8 1335.4 1.101.0
9 823.1 108.5 551.5 6.705.9

10 802.5 983.3 872.1
11
12 622.3 175.0 862.1 794.3 6.771.3
13 559.6
14
15
16
17 624.8 702.5
18
19
20
21 436.3 840.2 1267.7 7296.0 1273.0
22
23
24
25
26
27
28
29 1.421.4
30 686.7 433.0 403.9 280.6 701.4 1.059.3 307.5 3.381.8 565.8
. . .
45 362.3 2.087.6 1.046.9

Table A3. Modified Fourier analysis for Rn in AA, NG and SG 1-7 (4-W samples). Maxima of amplitude
are highlighted in bold.

Days Rn
AA

Rn
NG

Rn
SG1

Rn
SG2

Rn
SG3

Rn
SG4

Rn
SG5

Rn
SG6

Rn
SG7

1 1.5 17.2 51.1 34.9 12.0 62.0 53.9 40.1 28.3
2 1.5 47.2 55.3 16.7 188.3 35.6 59.8 64.5
3 2.6 37.4 164.9 47.3 10.7 211.8 95.7 49.1 75.3
4 1.5 21.9 143.2 75.6 13.4 67.7 109.3 67.3
5 1.8 21.0 54.5 19.5 40.9 48.3 60.9
6 2.1 9.9 101.0
7 17.8 11.8
8 45.4 128.6 58.1
9 47.3 55.6

10 2.5 12.4 62.5
11
12 77.3
13 218.3 141.4 129.6
14 2.6 92.9
15
16
17 37.8 70.6 40.7
18
19
20
21 11.2
22
23
24
25
26
27
28
29 0.9
30 1.5 17.2 51.1 34.9 12.0 62.0 53.9 40.1 28.3
. . .
41 129.6
. . .
45 58.7 426.5
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Appendix D

Table A4. Comparison of median He and Rn concentrations in NG, SG, and mineral springs for (a) the 7-M and (b) 4-W samples. Data for mineral springs are
extracted from Berberich et al. (2017 [35]). Data for NG and SG from this study.

7-M (bi-weekly; 01.03.–30.09.2016) (a) 4-W (8-hrs. 12.07.–11.08.2016) (b)

N Mean Median Min Max SD Median + 2MAD N Mean Median Min Max SD Median + 2MAD

Nette
He (ppm) 16 47.06 49.74 17.37 58.17 10.91 63.63 79 49.20 50.29 20.83 110.40 13.24 67.55
Rn (Bq/L) 16 6.47 6.26 2.62 9.46 1.88 9.11 79 8.01 6.58 0.56 59.90 8.08 12.92

Kärlich
He (ppm) 16 7.77 7.80 6.21 9.03 839.47 9.16 79 7.84 7.77 6.02 10.95 0.82 9.06
Rn (Bq/L) 16 72.44 73.69 38.32 114.02 15.22 92.00 79 73.73 78.11 4.91 92.33 15.58 99.71

Kobern
He (ppm) 16 2.97 2.02 0.98 1.11 2.55 5.56 79 4.38 4.48 1.00 7.50 1.24 6.23
Rn (Bq/L) 16 45.78 46.63 16.90 64.84 11.41 62.48 79 48.66 49.97 7.82 79.78 9.67 61.47

NG
He (ppm) 16 5.11 5.17 4.09 5.27 0.28 5.45 83 5.17 5.22 2.90 5.85 0.32 5.49
Rn (Bq/L) 16 1.77 1.63 0.05 6.06 1.53 3.90 83 5.85 5.09 0.19 15.65 4.39 12.57

SG1
He (ppm) 16 5.12 5.19 4.55 5.32 0.18 5.45 83 5.08 5.15 1.71 5.69 0.46 5.48
Rn (Bq/L) 16 86.30 100.49 11.07 138.33 33.75 156.46 83 64.50 67.03 0.32 96.81 17.91 89.25

SG2
He (ppm) 16 5.23 5.21 5.11 5.45 0.09 5.37 83 5.21 5.21 5.07 5.35 0.06 5.30
Rn (Bq/L) 16 19.78 20.74 5.89 29.68 6.83 31.81 83 12.77 12.56 0.10 59.79 6.59 18.97

SG3
He (ppm) 16 5.12 5.12 4.63 5.50 0.22 5.41 83 5.21 5.19 4.60 10.40 0.62 5.56
Rn (Bq/L) 16 2.96 2.64 0.68 7.17 1.61 5.04 83 3.92 3.40 0.19 43.66 4.85 7.13

SG4
He (ppm) 16 5.16 5.18 4.75 5.35 0.13 5.34 83 5.29 5.18 1.77 11.18 0.99 5.82
Rn (Bq/L) 16 113.83 118.00 53.75 162.90 33.28 172.76 83 92.38 98.58 23.81 145.71 26.99 141.84

SG5
He (ppm) 16 5.01 5.06 4.50 5.23 0.21 5.32 83 5.12 5.11 4.76 5.54 0.11 5.27
Rn (Bq/L) 16 74.46 79.87 40.68 99.79 16.18 107.16 83 55.17 57.28 12.47 74.91 12.63 76.41

SG6
He (ppm) 16 5.16 5.15 5.00 5.25 0.07 5.25 83 5.25 5.17 4.88 11.10 0.67 5.50
Rn (Bq/L) 16 8.65 7.87 2.78 14.31 3.09 12.67 83 11.69 10.63 0.72 64.55 8.43 17.48

SG7
He (ppm) 16 5.20 5.20 4.93 5.55 0.15 5.39 83 5.10 5.16 1.69 5.33 0.40 5.42
Rn (Bq/L) 16 48.29 41.04 0.13 94.42 27.51 89.05 83 32.17 31.17 0.57 69.08 12.51 50.26
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Appendix E

Figure A6. Cross-correlation of the time-series of SGmean vs. mineral springs (8-hour median smoothed)
for (a) CO2, (b) He, and (c) Rn for the 4-W samples. Blue dashed lines indicate confidence thresholds.

Appendix F

Figure A7. Cross-correlation of the time-series of NG vs. mineral springs (8-hour median smoothed)
for (a) CO2, (b) He, and (c) Rn for the 4-W samples. Blue dashed lines indicate confidence thresholds.
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Appendix G

Table A5. Comparison of gas concentrations in SG gas (a) from gas vents at Laacher See pasture
(2007; [9]); (b) Obermendig Site (2007; [9]); (c) random samplings at Goloring site (2010; Berberich.
unpublished); and average values of SG1–SG7 (SGmean) of the 7-M (d) and 4-W samples (e) at Goloring
(2016; this study). n.d. = not determined.

N Mean Median Min Max SD Median + 2MAD

(a) Laacher See pasture (24.9–27.9.2007; [9])

SG
CO2 (Vol. %) 87 13.80 3.30 0.03 100.00 23.70 n.d.

He (ppm) 87 5.44 5.25 1.33 10.10 1.00 n.d.
Rn (BqL−1) 70 8.63 6.96 0.12 30.80 6.84 n.d.

(b) Obermendig Site (24.9–27.9. 2007; [9])

SG
CO2 (Vol. %) 12 14.50 5.30 0.13 90.00 24.00 n.d.

He (ppm) 12 4.93 5.16 2.75 5.26 0.67 n.d.
Rn (BqL−1) 12 24.50 18.30 0.33 81.00 24.50 n.d.

(c) Random samplings at Goloring site (29.4.2010; Berberich. unpublished)

SG
CO2 (Vol. %) 9 4.18 2.00 1.20 13.00 4.39 8.69

He (ppm) 9 5.16 5.18 5.07 5.25 67.50 5.23
Rn (BqL−1) 9 32.02 19.24 0.06 91.18 29.27 65.58

(d) Goloring site 7-M (bi-weekly; 01.03.–30.09.2016; this study)

SGmean

CO2 (Vol. %) 112 4.03 3.20 0.00 15.00 3.55 8.74
He (ppm) 112 5.14 5.17 4.50 5.55 1.67 5.38

Rn (BqL−1) 112 50.61 34.46 0.13 162.90 44.83 112.85

(e) Goloring site 4-W (8-hrs; 12.07.–11.08.2016; this study)

SGmean

CO2 (Vol. %) 630 5.17 4.00 0.00 14.90 4.03 10.60
He (ppm) 83 5.18 5.17 1.69 11.18 5.52 5.45

Rn (BqL−1) 83 39.03 29.36 0.10 145.71 33.64 87.44
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