69 research outputs found

    PPARγ and Agonists against Cancer: Rational Design of Complementation Treatments

    Get PDF
    PPARγ is a member of the ligand-activated nuclear receptor superfamily: its ligands act as insulin sensitizers and some are approved for the treatment of metabolic disorders in humans. PPARγ has pleiotropic effects on survival and proliferation of multiple cell types, including cancer cells, and is now subject of intensive preclinical cancer research. Studies of the recent decade highlighted PPARγ role as a potential modulator of angiogenesis in vitro and in vivo. These observations provide an additional facet to the PPARγ image as potential anticancer drug. Currently PPARγ is regarded as an important target for the therapies against angiogenesis-dependent pathological states including cancer and vascular complications of diabetes. Some of the studies, however, identify pro-angiogenic and tumor-promoting effects of PPARγ and its ligands pointing out the need for further studies. Below, we summarize current knowledge of PPARγ regulatory mechanisms and molecular targets, and discuss ways to maximize the beneficial activity of the PPARγ agonists

    Nuclear Factor of Activated T Cells Balances Angiogenesis Activation and Inhibition

    Get PDF
    It has been demonstrated that vascular endothelial cell growth factor (VEGF) induction of angiogenesis requires activation of the nuclear factor of activated T cells (NFAT). We show that NFATc2 is also activated by basic fibroblast growth factor and blocked by the inhibitor of angiogenesis pigment epithelial–derived factor (PEDF). This suggests a pivotal role for this transcription factor as a convergence point between stimulatory and inhibitory signals in the regulation of angiogenesis

    Keratinocyte growth factor induces angiogenesis and protects endothelial barrier function

    Get PDF
    9 pages, 6 figures, 1 table.Keratinocyte growth factor (KGF), also called fibroblast growth factor-7, is widely known as a paracrine growth and differentiation factor that is produced by mesenchymal cells and has been thought to act specifically on epithelial cells. Here it is shown to affect a new cell type, the microvascular endothelial cell. At subnanomolar concentrations KGF induced in vivo neovascularization in the rat cornea. In vitro it was not effective against endothelial cells cultured from large vessels, but did act directly on those cultured from small vessels, inducing chemotaxis with an ED50 of 0.02-0.05 ng/ml, stimulating proliferation and activating mitogen activated protein kinase (MAPK). KGF also helped to maintain the barrier function of monolayers of capillary but not aortic endothelial cells, protecting against hydrogen peroxide and vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induced increases in permeability with an ED50 of 0.2-0.5 ng/ml. These newfound abilities of KGF to induce angiogenesis and to stabilize endothelial barriers suggest that it functions in microvascular tissue as it does in epithelial tissues to protect them against mild insults and to speed their repair after major damage.Peer reviewe

    Selective Inhibition of Vascular Endothelial Growth Factor–mediated Angiogenesis by Cyclosporin A: Roles of the Nuclear Factor of Activated T Cells and Cyclooxygenase 2

    Get PDF
    Cyclosporin A (CsA) is an immunosuppressive drug that inhibits the activity of transcription factors of the nuclear factor of activated T cells (NFAT) family, interfering with the induction of cytokines and other inducible genes required for the immune response. Here we show that CsA inhibits migration of primary endothelial cells and angiogenesis induced by vascular endothelial growth factor (VEGF); this effect appears to be mediated through the inhibition of cyclooxygenase (Cox)-2, the transcription of which is activated by VEGF in primary endothelial cells. Consistent with this, we show that the induction of Cox-2 gene expression by VEGF requires NFAT activation. Most important, the CsA-mediated inhibition of angiogenesis both in vitro and in vivo was comparable to the Cox-2 inhibitor NS-398, and reversed by prostaglandin E2. Furthermore, the in vivo corneal angiogenesis induced by VEGF, but not by basic fibroblast growth factor, was selectively inhibited in mice treated with CsA systemically. These findings involve NFAT in the regulation of Cox-2 in endothelial cells, point to a role for this transcription factor in angiogenesis, and may provide a novel mechanism underlying the beneficial effects of CsA in angiogenesis-related diseases such as rheumatoid arthritis and psoriasis.This work was supported by grant PM99-0116 from Ministerio de Educación y Cultura (MEC-DGES) of Spain (to J.M. Redondo) and grants FEDER 1FD97-0514-CO2-01 and FEDER FD97-0275 from MEC-DGES and the European Community to J.M. Redondo and M. Fresno, respectively. G.L. Hernández was supported by grants from Consejo Superior de Investigaciones Científicas y Tecnológicas (CONICET) of Argentina and Comunidad Autónoma de Madrid grant 8.3/0024/2000, and M. Fresno by grant PM97-0130, O. Volpert by American Heart Association grant AHA SDG 0030023N, and S. Martínez-Martínez by grant 8.3/19/1998 from the Comunidad Autónoma de Madrid. The Centro de Biología Molecular "Severo Ochoa" is supported by a grant from the Fundación Ramón ArecesPeer reviewe

    Selective Inhibition of Vascular Endothelial Growth Factor–Mediated Angiogenesis by Cyclosporin a: Roles of the Nuclear Factor of Activated T Cells and Cyclooxygenase 2

    Get PDF
    Cyclosporin A (CsA) is an immunosuppressive drug that inhibits the activity of transcription factors of the nuclear factor of activated T cells (NFAT) family, interfering with the induction of cytokines and other inducible genes required for the immune response. Here we show that CsA inhibits migration of primary endothelial cells and angiogenesis induced by vascular endothelial growth factor (VEGF); this effect appears to be mediated through the inhibition of cyclooxygenase (Cox)-2, the transcription of which is activated by VEGF in primary endothelial cells. Consistent with this, we show that the induction of Cox-2 gene expression by VEGF requires NFAT activation. Most important, the CsA-mediated inhibition of angiogenesis both in vitro and in vivo was comparable to the Cox-2 inhibitor NS-398, and reversed by prostaglandin E2. Furthermore, the in vivo corneal angiogenesis induced by VEGF, but not by basic fibroblast growth factor, was selectively inhibited in mice treated with CsA systemically. These findings involve NFAT in the regulation of Cox-2 in endothelial cells, point to a role for this transcription factor in angiogenesis, and may provide a novel mechanism underlying the beneficial effects of CsA in angiogenesis-related diseases such as rheumatoid arthritis and psoriasis

    Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1

    Get PDF
    AbstractId proteins are helix-loop-helix transcription factors that regulate tumor angiogenesis. In order to identify downstream effectors of Id1 involved in the regulation of angiogenesis, we performed PCR-select subtractive hybridization on wild-type and Id1 knockout mouse embryo fibroblasts (MEFs). Here we demonstrate that thrombospondin-1 (TSP-1), a potent inhibitor of angiogenesis, is a target of transcriptional repression by Id1. We also show that Id1-null MEFs secrete an inhibitor of endothelial cell migration, which is completely inactivated by depletion of TSP-1. Furthermore, in vivo studies revealed decreased neovascularization in matrigel assays in Id1-null mice compared to their wild-type littermates. This decrease was completely reversed by a TSP-1 neutralizing antibody. We conclude that TSP-1 is a major target for Id1 effects on angiogenesis

    Androgen receptor targets NFKB and TSPI to suppress prostate tumor growth in vivo

    Get PDF
    The androgen role in the maintenance of prostate epithelium is subject to conflicting opinions. While androgen ablation drives the regression of normal and cancerous prostate, testosterone may cause both proliferation and apoptosis. Several investigators note decreased proliferation and stronger response to chemotherapy of the prostate cancer cells stably expressing androgen receptor (AR), however no mechanistic explanation was offered. In this paper we demonstrate in vivo anti-tumor effect of the AR on prostate cancer growth and identify its molecular mediators. We analyzed the effect of AR on the tumorigenicity of prostate cancer cells. Unexpectedly, the AR-expressing cells formed tumors in male mice at a much lower rate than the AR-negative controls. Moreover, the AR-expressing tumors showed decreased vascularity and massive apoptosis. AR expression lowered the angiogenic potential of cancer cells, by increasing secretion of an anti-angiogenic protein, thrombospondin-1. AR activation caused a decrease in RelA, a subunit of the pro-survival transcription factor NF kappa B, reduced its nuclear localization and transcriptional activity. This, in turn, diminished the expression of its anti-apoptotic targets, Bcl-2 and IL-6. Increased apoptosis within AR-expressing tumors was likely due to the NF kappa B suppression, since it was restricted to the cells lacking nuclear (active) NF kappa B. Thus we for the first time identified combined decrease of NF kappa B and increased TSP1 as molecular events underlying the AR anti-tumor activity in vivo. Our data indicate that intermittent androgen ablation is preferable to continuous withdrawal, a standard treatment for early-stage prostate cancer. (C) 2007 Wiley-Liss, Inc.The androgen role in the maintenance of prostate epithelium is subject to conflicting opinions. While androgen ablation drives the regression of normal and cancerous prostate, testosterone may cause both proliferation and apoptosis. Several investigators note decreased proliferation and stronger response to chemotherapy of the prostate cancer cells stably expressing androgen receptor (AR), however no mechanistic explanation was offered. In this paper we demonstrate in vivo anti-tumor effect of the AR on prostate cancer growth and identify its molecular mediators. We analyzed the effect of AR on the tumorigenicity of prostate cancer cells. Unexpectedly, the AR-expressing cells formed tumors in male mice at a much lower rate than the AR-negative controls. Moreover, the AR-expressing tumors showed decreased vascularity and massive apoptosis. AR expression lowered the angiogenic potential of cancer cells, by increasing secretion of an anti-angiogenic protein, thrombospondin-1. AR activation caused a decrease in RelA, a subunit of the pro-survival transcription factor NF kappa B, reduced its nuclear localization and transcriptional activity. This, in turn, diminished the expression of its anti-apoptotic targets, Bcl-2 and IL-6. Increased apoptosis within AR-expressing tumors was likely due to the NF kappa B suppression, since it was restricted to the cells lacking nuclear (active) NF kappa B. Thus we for the first time identified combined decrease of NF kappa B and increased TSP1 as molecular events underlying the AR anti-tumor activity in vivo. Our data indicate that intermittent androgen ablation is preferable to continuous withdrawal, a standard treatment for early-stage prostate cancer. (C) 2007 Wiley-Liss, Inc

    Androgen Receptor Drives Cellular Senescence

    Get PDF
    The accepted androgen receptor (AR) role is to promote proliferation and survival of prostate epithelium and thus prostate cancer progression. While growth-inhibitory, tumor-suppressive AR effects have also been documented, the underlying mechanisms are poorly understood. Here, we for the first time link AR anti-cancer action with cell senescence in vitro and in vivo. First, AR-driven senescence was p53-independent. Instead, AR induced p21, which subsequently reduced ΔN isoform of p63. Second, AR activation increased reactive oxygen species (ROS) and thereby suppressed Rb phosphorylation. Both pathways were critical for senescence as was proven by p21 and Rb knock-down and by quenching ROS with N-Acetyl cysteine and p63 silencing also mimicked AR-induced senescence. The two pathways engaged in a cross-talk, likely via PML tumor suppressor, whose localization to senescence-associated chromatin foci was increased by AR activation. All these pathways contributed to growth arrest, which resolved in senescence due to concomitant lack of p53 and high mTOR activity. This is the first demonstration of senescence response caused by a nuclear hormone receptor

    Mechanistic insights on the inhibition of tumor angiogenesis

    No full text
    Angiogenesis, the growth of new vasculature, is an absolute requirement for the maintenance and progression of the overwhelming majority of the solid tumors. Unraveling the mechanisms that govern this complex biological process has become a central issue not only for understanding of the molecular basis of cancer but also for developing new therapeutic approaches that interfere with neovascularization of the tumor mass. Here we discuss the survival and apoptosis of endothelial cells in the context of vessel formation and regression in response to mediators of angiogenesis produced by tumors. It is the balance between proangiogenic and antiangiogenic molecules in the microenvironment of a vessel in vivo that determines whether the existing vasculature will expand, remain the same, or regress. Here we propose that the vascular endothelial cells themselves interpret and respond to these environmental cues by integrating the activities of the survival and apoptotic pathways within the cell. Thus it is the survival or death of the vulnerable cells that venture out to form new vessels that is the ultimate arbiter of whether neovascularization, as well as the growth of a malignancy that depends on it, succeeds or fails.Peer Reviewe
    corecore