30,562 research outputs found
Attenuation studies at 35 GHz
Instrumentation and preliminary results of studies of attenuation of 35 GHz radio signals transmitted through the atmosphere are reported. The purpose of this work is to provide information to supplement the ATS-5 downlink tests. Data on atmospheric losses at 35 GHz are being obtained by sun tracker techniques, sky temperature observations, and point-to-point transmissions
Emission FTIR analyses of thin microscopic patches of jet fuel residues deposited on heated metal surfaces
The relationship of fuel stability to fuel composition and the development of mechanisms for deposit formation were investigated. Fuel deposits reduce heat transfer efficiency and increase resistance to fuel flow and are highly detrimental to aircraft performance. Infrared emission Fourier transform spectroscopy was chosen as the primary method of analysis because it was sensitive enough to be used in-situ on tiny patches of monolayers or of only a few molecular layers of deposits which generally proved completely insoluble in any nondestructive solvents. Deposits of four base fuels were compared; dodecane, a dodecane/tetralin blend, commercial Jet A fuel, and a broadened-properties jet fuel particularly rich in polynuclear aromatics. Every fuel in turn was provided with and without small additions of such additives as thiophene, furan, pyrrole, and copper and iron naphthenates
Emission FTIR analyses of thin microscopic patches of jet fuel residue deposited on heated metal surface
Deposits laid down in patches on metal strips in a high pressure/high temperature fuel system simulator operated with aerated fuel at varying flow rates were analyzed by emission FTIR in terms of functional groups. Significant differences were found in the spectra and amounts of deposits derived from fuels to which small concentrations of oxygen-, nitrogen-, or sulfur-containing heterocyclics or metal naphthenates were added. The spectra of deposits generated on strips by heating fuels and air in a closed container were very different from those of the flowing fluid deposits. One such closed-container dodecane deposit on silver gave a strong surface-enhanced Raman spectrum
High electrical resistivity carbon/graphite fibers
Carbon/graphite fibers were chemically oxidized in the liquid phase to fibers of graphite oxide. Resistivity increases as high as 10,000 times were obtained, the oxidized fiber decomposed on exposure to atmosphere. A factor of 1,000 remained as a stable increment. The largest change observed was 1,000,000 times. Best results were obtained on the most highly graphitized fibers. Electrochemical oxidation yielded a lower increase--about 10 times, but provided a controllable method of synthesis and insight to the mechanism of reaction. Tensile tests indicated that the strength of the fiber on oxidation was decreased by no more than 25 percent
Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography
By 'atmospheric tomography' we mean the estimation of a layered atmospheric turbulence profile from measurements of the pupil-plane phase (or phase gradients) corresponding to several different guide star directions. We introduce what we believe to be a new Fourier domain preconditioned conjugate gradient (FD-PCG) algorithm for atmospheric tomography, and we compare its performance against an existing multigrid preconditioned conjugate gradient (MG-PCG) approach. Numerical results indicate that on conventional serial computers, FD-PCG is as accurate and robust as MG-PCG, but it is from one to two orders of magnitude faster for atmospheric tomography on 30 m class telescopes. Simulations are carried out for both natural guide stars and for a combination of finite-altitude laser guide stars and natural guide stars to resolve tip-tilt uncertainty
Methods for predicting thermal stress cracking in turbine stator or rotor blades Summary report
Test rig for predicting thermal stress cracking in turbine stator or rotor blade
The VWFA: It\u27s not just for words anymore
Reading is an important but phylogenetically new skill. While neuroimaging studies have identified brain regions used in reading, it is unclear to what extent these regions become specialized for use predominantly in reading vs. other tasks. Over the past several years, our group has published three studies addressing this question, particularly focusing on whether the putative visual word form area (VWFA) is used predominantly in reading, or whether it is used more generally in a number of tasks. Our three studies utilize a range of neuroimaging techniques, including task based fMRI experiments, a seed based resting state functional connectivity (RSFC) experiment, and a network based RSFC experiment. Overall, our studies indicate that the VWFA is not used specifically or even predominantly for reading. Rather the VWFA is a general use region that has processing properties making it particularly useful for reading, though it continues to be used in any task that requires its general processing properties. Our network based RSFC analysis extends this finding to other regions typically thought to be used predominantly for reading. Here, we review these findings and describe how the three studies complement each other. Then, we argue that conceptualizing the VWFA as a brain region with specific processing characteristics rather than a brain region devoted to a specific stimulus class, allows us to better explain the activity seen in this region during a variety of tasks. Having this type of conceptualization not only provides a better understanding of the VWFA but also provides a framework for understanding other brain regions, as it affords an explanation of function that is in keeping with the long history of studying the brain in terms of the type of information processing performed (Posner, 1978)
- …