333 research outputs found
Cooperative network-coding system for wireless sensor networks
Describes a cooperative network coding system for wireless sensor networks. In this paper, we propose two practical power) and bandwidth)efficient systems based on amplify)and)forward (AF) and decode)and)forward (DF) schemes to address the problem of information exchange via a relay. The key idea is to channel encode each source’s message by using a high)performance non)binary turbo code based on Partial Unit Memory (PUM) codes to enhance the bit)error)rate performance, then reduce the energy consumption and increase spectrum efficiency by using network coding (NC) to combine individual nodes’ messages at the relay before forwarding to the destination. Two simple and low complexity physical layer NC schemes are proposed based on combinations of received source messages at the relay. We also present the theoretical limits and numerical analysis of the proposed schemes. Simulation results under Additive White Gaussian Noise, confirm that the proposed schemes achieve significant bandwidth savings and fewer transmissions over the benchmark systems which do not resort to NC. Theoretical limits for capacity and Signal to Noise Ratio behaviour for the proposed schemes are derived. The paper also proposes a cooperative strategy that is useful when insufficient combined messages are received at a node to recover the desired source messages, thus enabling the system to retrieve all packets with significantly fewer retransmission request messages
Bandwidth efficient multi-station wireless streaming based on complete complementary sequences
Data streaming from multiple base stations to a client is recognized as a robust technique for multimedia streaming. However the resulting transmission in parallel over wireless channels poses serious challenges, especially multiple access interference, multipath fading, noise effects and synchronization. Spread spectrum techniques seem the obvious choice to mitigate these effects, but at the cost of increased bandwidth requirements. This paper proposes a solution that exploits complete complementary spectrum spreading and data compression techniques jointly to resolve the communication challenges whilst ensuring efficient use of spectrum and acceptable bit error rate. Our proposed spreading scheme reduces the required transmission bandwidth by exploiting correlation among information present at multiple base stations. Results obtained show 1.75 Mchip/sec (or 25%) reduction in transmission rate, with only up to 6 dB loss in frequency-selective channel compared to a straightforward solution based solely on complete complementary spectrum spreading
Code designs for MIMO broadcast channels
Recent information-theoretic results show the optimality of dirty-paper coding (DPC) in achieving the full capacity region of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC). This paper presents a DPC based code design for BCs. We consider the case in which there is an individual rate/signal-to-interference-plus-noise ratio (SINR) constraint for each user. For a fixed transmitter power, we choose the linear transmit precoding matrix such that the SINRs at users are uniformly maximized, thus ensuring the best bit-error rate performance. We start with Cover's simplest two-user Gaussian BC and present a coding scheme that operates 1.44 dB from the boundary of the capacity region at the rate of one bit per real sample (b/s) for each user. We then extend the coding strategy to a two-user MIMO Gaussian BC with two transmit antennas at the base-station and develop the first limit-approaching code design using nested turbo codes for DPC. At the rate of 1 b/s for each user, our design operates 1.48 dB from the capacity region boundary. We also consider the performance of our scheme over a slow fading BC. For two transmit antennas, simulation results indicate a performance loss of only 1.4 dB, 1.64 dB and 1.99 dB from the theoretical limit in terms of the total transmission power for the two, three and four user case, respectively
A graph-based signal processing approach for low-rate energy disaggregation
Graph-based signal processing (GSP) is an emerging field that is based on representing a dataset using a discrete signal indexed by a graph. Inspired by the recent success of GSP in image processing and signal filtering, in this paper, we demonstrate how GSP can be applied to non-intrusive appliance load monitoring (NALM) due to smoothness of appliance load signatures. NALM refers to disaggregating total energy consumption in the house down to individual appliances used. At low sampling rates, in the order of minutes, NALM is a difficult problem, due to significant random noise, unknown base load, many household appliances that have similar power signatures, and the fact that most domestic appliances (for example, microwave, toaster), have usual operation of just over a minute. In this paper, we proposed a different NALM approach to more traditional approaches, by representing the dataset of active power signatures using a graph signal. We develop a regularization on graph approach where by maximizing smoothness of the underlying graph signal, we are able to perform disaggregation. Simulation results using publicly available REDD dataset demonstrate potential of the GSP for energy disaggregation and competitive performance with respect to more complex Hidden Markov Model-based approaches
On a training-less solution for non-intrusive appliance load monitoring using graph signal processing
With ongoing large-scale smart energy metering deployments worldwide, disaggregation of a household’s total energy consumption down to individual appliances using analytical tools, aka. non-intrusive appliance load monitoring (NALM), has generated increased research interest lately. NALM can deepen energy feedback, support appliance retrofit advice and support home automation. However, despite the fact that NALM was proposed over 30 years ago, there are still many open challenges with respect to its practicality and effectiveness at low sampling rates. Indeed, the majority of NALM approaches, supervised or unsupervised, require training to build appliance models, and are sensitive to appliance changes in the house, thus requiring regular re-training. In this paper, we tackle this challenge by proposing a NALM approach that does not require any training. The main idea is to build upon the emerging field of graph signal processing to perform adaptive thresholding, signal clustering and pattern matching. We determine the performance limits of our approach and demonstrate its usefulness in practice. Using two open access datasets - the US REDD dataset with active power measurements downsampled to 1min resolution and the UK REFIT dataset with 8sec resolution, we demonstrate the effectiveness of the proposed method for typical smart meter sampling rate, with state-of-the-art supervised and unsupervised NALM approaches as benchmarks
Blind non-intrusive appliance load monitoring using graph-based signal processing
With ongoing massive smart energy metering deployments, disaggregation of household's total energy consumption down to individual appliances using purely software tools, aka. non-intrusive appliance load monitoring (NALM), has generated increased interest. However, despite the fact that NALM was proposed over 30 years ago, there are still many open challenges. Indeed, the majority of approaches require training and are sensitive to appliance changes requiring regular re-training. In this paper, we tackle this challenge by proposing a "blind" NALM approach that does not require any training. The main idea is to build upon an emerging field of graph-based signal processing to perform adaptive thresholding, signal clustering and feature matching. Using two datasets of active power measurements with 1min and 8sec resolution, we demonstrate the effectiveness of the proposed method using a state-of-the-art NALM approaches as benchmarks
Electricity usage profile disaggregation of hourly smart meter data
This paper is motivated by the growing demand of disaggregating electricity consumption measured by smart meters, down to appliance level. The very low 15-min to 60- min granularity of energy measurements available for analysis, as is standard by the majority of nationwide smart metering programmes, is posing serious challenges. The non-intrusive load monitoring (NILM) solutions for these very low data rates cannot leverage on low (1-60sec) to high rates (in the order of kHz to MHz) NILM approaches, and so far have not received much attention in the literature. In this paper, we propose a novel electricity profile hourly disaggregation of energy consumed (kWh) based on K-nearest neighbours (K-NN), that relies on features such as statistical measures of the energy signal, time usage profile of appliances and reactive power consumption (if available). We propose relative standard deviation as a metric to assess the quality of each feature per appliance. For validation, three publicly accessible real-world datasets are used, namely the REDD, REFIT and AMPds (Version 2), for up to 3 months
An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study
Smart meter roll-outs provide easy access to granular meter measurements, enabling advanced energy services, ranging from demand response measures, tailored energy feedback and smart home/building automation. To design such services, train and validate models, access to data that resembles what is expected of smart meters, collected in a real-world setting, is necessary. The REFIT electrical load measurements dataset described in this paper includes whole house aggregate loads and nine individual appliance measurements at 8-second intervals per house, collected continuously over a period of two years from 20 houses. During monitoring, the occupants were conducting their usual routines. At the time of publishing, the dataset has the largest number of houses monitored in the United Kingdom at less than 1-minute intervals over a period greater than one year. The dataset comprises 1,194,958,790 readings, that represent over 250,000 monitored appliance uses. The data is accessible in an easy-to-use comma-separated format, is time-stamped and cleaned to remove invalid measurements, correctly label appliance data and fill in small gaps of missing data
Blind non-intrusive appliance load monitoring using graph-based signal processing
With ongoing massive smart energy metering deployments, disaggregation of household's total energy consumption down to individual appliances using purely software tools, aka. non-intrusive appliance load monitoring (NALM), has generated increased interest. However, despite the fact that NALM was proposed over 30 years ago, there are still many open challenges. Indeed, the majority of approaches require training and are sensitive to appliance changes requiring regular re-training. In this paper, we tackle this challenge by proposing a 'blind' NALM approach that does not require any training. The main idea is to build upon an emerging field of graph-based signal processing to perform adaptive threshold-ing, signal clustering and feature matching. Using two datasets of active power measurements with 1min and 8sec resolution, we demonstrate the effectiveness of the proposed method using a state-of-the-art NALM approaches as benchmarks
- …