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Abstract—Graph-based signal processing (GSP) is an emerg-
ing field that is based on representing a dataset using a discrete
signal indexed by a graph. Inspired by the recent success of
GSP in image processing and signal filtering, in this paper, we
demonstrate how GSP can be applied to non-intrusive appliance
load monitoring (NALM) due to smoothness of appliance load sig-
natures. NALM refers to disaggregating total energy consumption
in the house down to individual appliances used. At low sampling
rates, in the order of minutes, NALM is a difficult problem, due
to significant random noise, unknown base load, many household
appliances that have similar power signatures, and the fact that
most domestic appliances (for example, microwave, toaster), have
usual operation of just over a minute. In this paper, we proposed
a different NALM approach to more traditional approaches, by
representing the dataset of active power signatures using a graph
signal. We develop a regularization on graph approach where by
maximizing smoothness of the underlying graph signal, we are
able to perform disaggregation. Simulation results using publicly
available REDD dataset demonstrate potential of the GSP for
energy disaggregation and competitive performance with respect
to more complex Hidden Markov Model-based approaches.

I. INTRODUCTION

Non-intrusive appliance load monitoring (NALM) refers to
disaggregating total energy consumption of a household down
to individual appliances using computational methods with-
out resorting to individual appliance load monitors. Though
NALM has been studied since 1980’s [1], [2] it has generated
renewed interest recently as large-scale smart meter deploy-
ments are underway [3]. Since conventional smart meters
measure only total energy consumption at the rates in the order
of seconds or minutes, low-rate NALM approaches [4] that use
only active power readings are highly needed.

NALM has the potential to revolutionize demand response
methods and energy feedback mechanisms by providing timely
energy saving advice to the customers. NALM is also useful
to customers to determine which appliances are the most
energy consuming ones, which are faulty, and when it is time
to replace or service an old appliance. NALM is useful to
suppliers for demand management, to network operators to
facilitate power planning, to appliance manufactures to learn
about the ways appliances are used, and to policy makers, for
example, for appliance energy-grading assessments. Moreover,
NALM facilitates a network of ‘virtual power sensors’ attached
to each appliance, supporting the smart appliance concept
via Internet of Things and opening the door for applications
that go far beyond energy, such as assistive living and smart
homes/buildings [5].

While high-rate NALM approaches have been extensively
studied in the past, low-rate NALM methods using active
power readings provided by commercially available energy
monitors are still in their infancy [6], [7]. The majority of
low-rate NALM methods are state-based methods that first
represent each appliance using a state machine and then transit
from state to state, based on user actions. Such approaches
are usually based on Hidden Markov Model (HMM) and their
variants, because HMMs are proven methods for modelling the
combination of stationary processes, with continuous valued
data over discrete time (see [7], [8], [9], [10], [11], [12] and
references therein). HMMs probabilistically model sequential
data, incorporating in the learning process time-dependency in
running appliances as well as the transition of the appliance
through different states during its operation. The key problem
of HMM-based and other state-based approaches is their high
computational complexity.

Another class of NALM algorithms are event-based NALM
approaches (note that state-based NALM approaches can also
be event-based). These methods first use edge detection to
identify the start and the end of an event when the state of
an appliance has changed (for example, appliance is switched
on or off). Then, features are extracted from the detected events
and a classification approach is applied to associate the event
with an appliance. Many techniques have been applied to per-
form classification and optimization to design classifiers such
as fuzzy logic, Naive Bayes, k-nearest neighbor (kNN), de-
cision trees, neural networks, support vector machine, HMM,
and many hybrid methods (see [6], [7], [13] and references
there in). The key issue of these approaches is that event
detection, usually performed via fixed or adaptive thresholding,
limits the performance of the algorithm regardless of the
classification method employed. Further details of the practical
implementation and complexity of some of the approaches are
discussed in [4], [14].

In this paper, we take a different approach, developing a
graph-based signal processing method for energy disaggrega-
tion that is neither state-based nor event-based. Graph-based
signal processing (GSP) [15] is an emerging field that relies on
expressing piecewise smoothness of a signal through a graph.
A dataset is represented by a discrete signal indexed by a
graph where the acquired signal samples correspond to the
graph nodes with cleverly defined weighted graph edges. Then,
classical signal processing concepts can be extended to these
“graph signals” [16]. If a signal is piecewise smooth, then the
total graph variation is generally small, which is used in [17]
for data classification. A supervised classification approach is



proposed in [17] for image and document datasets that tries to
find a smooth graph signal that is conditioned on the known
labels by minimizing the total graph variation.

Inspired by the initial success of GSP in many fields [15],
[16], [17], in this paper, we propose a GSP-based NALM ap-
proach by extending [17] to perform low-complexity multiclass
classification of the acquired active power readings without the
need for event detection to detect appliance changing states,
e.g., switching on/off. We index the acquired power signal by a
directed graph where each vertex corresponds to a load sample
and the weights of the edges connecting the vertices reflect the
degree of similarity between the nodes. Then, we define an
optimization problem that contains as the regularization term
the total graph variation, that is, we apply regularization on
the constructed graph signal to find a signal with minimum
variation. Our experimental results using publicly available
REDD dataset [18] demonstrate high potentials of the proposed
approach.

The rest of the paper is organized as follows. Section II
brings a brief background on GSP and NALM. Section III
describes the proposed NALM algorithm. The last two sections
discuss the simulation results, conclusion and future work.

II. RELATED WORK

In this section, we first provide a brief introduction to
graph-based signal processing and then review the state of the
art in low-rate NALM.

A. Graph-based signal processing

Graph-based signal processing (GSP) is an emerging field
that is based on graph signals obtained by indexing a dataset
by nodes of a graph. A linear discrete signal processing
on graphs framework is introduced in [16] together with
notions of signal shift on a graph, graph filters, graph signal
convolution, graph Fourier transform, frequency, spectrum,
spectral decomposition, and impulse and frequency responses.
The basic idea is to represent a dataset using a graph defined
by a set of nodes and a weighted adjacency matrix. Each node
in the graph corresponds to an element in the dataset while
the adjacency matrix defines all directed edges in the graph
and their weights, where assigned weights reflect the degree
of similarity, i.e., correlation, between the nodes.

GSP has been shown to be a useful tool in many ap-
plication ranging from image processing to wireless sensor
networks. Indeed, in [16] potentials of GSP to linear predi-
cation, customer behavior prediction, and image compression
are demonstrated. GSP, or more specifically, graph Fourier
transform, has been used for image compression (depth map
coding) and image denoising in [19] and [20], respectively. In
[17], the GSP tools are used for dataset classification, where
it is shown that the GSP-based classification, as applied to
image classification, provides more accurate and more robust
results compared to standard support vector machine (SVM)
and neural network-based approaches. In [21], the GSP tools
are used for depth map denoising and for binary classification,
using an unconstrained quadratic programming approach to
solve the optimization problem searches for a smooth graph
signal. In this paper, we attempt to represent the power load
dataset as a graph, since we know that adjacent elements (i.e.,

nodes) within one appliance usage tend to change smoothly
over time.

B. Low-rate NALM

Non-Intrusive Appliance Load Monitoring (NALM), also
referred to as NILM or NIALM [1], disaggregates the total
load down to individual appliances in use at any point in time
without resorting to intrusive plug monitors. While NALM
on high sampling rate loads in the order of KHz and MHz
(see [6], [7] and references therein) has been widely studied,
NALM research at low sampling rates in the order of seconds
and minutes is slowly picking up momentum. This is due
to the inherent difficulty of achieving high disaggregation
accuracy, the need for a radically different and challenging
approach of tackling the disaggregation problem for power
load sampled at less than 1Hz, and ongoing large scale smart
meter deployments [3] using commercial and cheap smart
meters that are going to be massively deployed to facilitate
remote billing. In contrast to high-rate NALM, low-rate NALM
methods that exploit only active power readings, are still very
much in their infancy since there no NALM method has yet
been published that provides high accuracy and robustness at
low complexity [6], [7], [4].

Generally, NALM methods [1], [2] target the disaggre-
gation problem in four steps, namely signal pre-processing,
edge/event detection, feature extraction and classification.
Event detection identifies appliances being switched on and off
or changing their operation states (for multi-state appliances,
such as washing machine) as events. After edge detection,
features (for example, active power) are extracted in the
identified event windows, and then the events are classified into
pre-defined categories, each corresponding to one known ap-
pliance. Different state-of-the-art classification tools have been
used, including SVM (for example, in [22], [23], [24]), neural
networks (for example, in [25], [26]), and decision trees [27],
[4]. However, the performance of these event-based NALM
approaches, is limited by the event detection tool employed.
Challenges encountered by event detection tools include large
measurement noise, large variance of active power readings for
common household appliances, and similarity among active
power steady-state signatures of different appliances.

Alternatively, state-based probabilistic methods based on
Hidden Markov Models have recently gained popularity. [10]
proposes four different methods for low-rate NALM using
(conditional) factorial Hidden Markov Models (HMM) and
Hidden semi-Markov models, but these methods have high
computational complexity, are prone to converge to a local
minimum and cannot disaggregate appliances that are always
on or on for extended periods of time, such as TV. [11]
proposes factorial HMM for disaggregation of active power
load at 1min sampling rate, using expert knowledge to build
initial models for states of known appliances. To obtain
reliable results, it is necessary to correctly set the a priori-
values for each state for each appliance, which in turn is
limited by and strongly dependent on the particular aggregate
dataset on which NALM is being performed. In [12], an
unsupervised Additive Factorial Approximate Maximum A-
Posteriori (AFMAP) inference algorithm is proposed using
differential factorial HMMs. First, all snippets of active power
data are extracted using a threshold and modelled by an



HMM; next, the k-nearest-neighbor graph is used to build
nine motifs that are treated as HMMs over which AFMAP
is run. The results show average accuracy of 87.2% using 7
appliances and sampling rate of 60Hz. [28] uses DP-pruning
and monotonic enumeration for state machine-based time
series disaggregation. In [29] Hierarchical Dirichlet Process
Hidden Semi-Markov Model (HDP-HSMM) factorial structure
is used removing some limitations of the approach of [10] at
increased complexity.

The main problem with the above state-based approaches
is their high computational complexity, which makes them
unsuitable for real-time applications [13]. The HMM-based
method of lower complexity, proposed in [30], reduces the
execution time by 72.7 times, but still requires 11.4 seconds
for disaggregating two appliances using 524,544 readings or
94 minutes for 11 appliances.

III. PROPOSED GSP-BASED NALM METHOD

In this section, we describe the proposed GSP-based
NALM method. First, a word about notation. All matrices are
denoted by upper-case bold letters, such as A. AT and A−1

are the transpose and pseudo-inverse matrix of A, respectively.
An element in the i-th row and j-column of matrix A is
denoted by A(i, j). Vectors are denoted by lower-case bold
letters, such as x with the i-th element x(i), and x(i : j)
denotes a sub-vector [x(i), x(i + 1), . . . , x(j)]T , for i < j.
Sets are denoted using bold-letters, such M̄. For a set M̄,
|M̄| denotes its cardinality.

A. Problem Formulation

Let M̄ be the set of all appliances in the house. Let p(ti)
be active power measured at time instance ti. Without loss
of generality, in the following, we denote p(ti) as p(ti) =
p(iT ) = p(i) ≥ 0, where T = ti − ti−1 is the sampling
interval. Let p be a vector of N samples p(1), . . . , p(N). Let
pm(j) be the power load of appliance m ∈ M̄ at time instance
jT . Let p̄m be a set of all possible values of pm(j) (for all
j), where pm(j) ≥ 0. Note that pj(i) is zero if appliance j is
inactive at time instance iT , thus p̄m includes zero, unless the
appliance m is always active.

The disaggregation task is then to find pj(i) for all j, such
that, for i = 1, . . . , N ,

p(i) =

|M̄|
∑

j=1

pj(i) + n(i), (1)

under the constraint: pj(i) ∈ p̄j . Here, n(i) is the measurement
noise.

B. GSP-based NALM

Suppose that for i ≤ n < N , all pm(i), for all m ∈ M̄
are known, for example, obtained during training. The task is
to find pm(i), for n < i ≤ N . Let ∆p(i) = p(i + 1) − p(i),
and similarly ∆pm(i) = pm(i+1)− pm(i) denote the change
of the active power signal for appliance m. Let Tr ≥ 0 be a
small threshold. Then, we define an N -length vector sm as:

sm =







+1, for ∆pm(i) ≥ Tr and i ≤ n

−1, for ∆pm(i) < Tr and i ≤ n

0, for i > n

(2)

The vector sm is represented by a time-discrete graph
signal, indexed by a graph Gm = (V̄m,Am), where V̄m

is a set of nodes and Am is a weighted adjacency matrix
of the graph. Each ‘sample’ of sm, sm(i), corresponds to a
node vm(i) in Gm, while Am(i, j) denotes the weight of the
directed edge from node vm(i) to vm(j) that depends on the
level of correlation between p(i) and p(j).

Thus, Gm is a directed graph with N nodes described by an
N×N adjacency matrix Am. Two nodes vm(i) and vm(j) are
connected with an edge if there is correlation between ∆p(i)
and ∆p(j), in which case Am(i, j) 6= 0. Similarly to [17]
and [21], we define A(i, j) using a Gaussian kernel weighting
function:

Am(i, j) = exp{−
(∆p(i) − ∆p(j))2

σ2
}, (3)

where σ is a heuristically chosen scaling factor.

Let Dm be an N × N diagonal matrix where for k =
1, . . . , N

Dm(k, k) =

N
∑

j=1

Am(j, k). (4)

Then, an N × N Laplacian matrix Lm is defined as:

Lm = Dm − Am. (5)

Now, for i = 1, . . . , N , we can formulate the optimization
problem as:

min
pm(i)

||∆p(i)−
∑

m∈M̄

∆pm(i)||22 +λ
∑

m∈M̄

||sm
T Lmsm||22, (6)

where the regularization factor sm
T Lmsm is the total signal

variation over the graph based on the Laplacian matrix [17].
Note that (6) defines an optimal solution as the one that
minimizes the fidelity term ||∆p(i)−

∑

m∈∈M̄
∆pm(i)||22 and

is smooth, where λ is a parameter that trades off smoothness
of the graph signal and the fidelity term.

The minimization problem in (6) is a hard optimization
problem especially since |M̄| and N can be large. Thus,
instead of directly trying to minimize (6), we first minimize
the smoothness term and then iteratively try to improve the
solution in a greedy manner.

Having in mind that sm(1 : n) is known (set during
training), we can simplify the smoothness term as [21]:

sm
T Lmsm = sm(1 : n)T Lm(1 : n, 1 : n)sm(1 : n)+

sm(1 : n)T Lm(1 : n, n + 1 : N)sm(n + 1 : N)+

sm(n + 1 : N)T Lm(n + 1 : N, 1 : n)sm(1 : n)+

sm(n + 1 : N)T Lm(n + 1 : N, n + 1 : N)sm(n + 1 : N).
(7)

Since sm(1 : n) is constant, the first term does not affect
minimization. Moreover, since matrices Am and Dm are



diagonal by construction, then matrix Lm is also diagonal.
Thus, it follows:

sm(1 : n)T Lm(1 : n, n : N)sm(n + 1 : N) =

sm(n + 1 : N)T Lm(n + 1 : N, 1 : n)sm(1 : n).
(8)

From here we can express the smoothness terms as:

min ||sm
T Lmsm||22 =

min 2sm(n + 1 : N)T Lm(n + 1 : N, 1 : n)sm(1 : n)+

sm(n + 1 : N)T Lm(n + 1 : N,n + 1 : N)sm(n + 1 : N).
(9)

This is an unconstrained quadratic programming problem
with a closed form solution [31], [21]:

s∗
m

= Lm(n + 1 : N, n + 1 : N)−1∗

(−sm(1 : n)T )Lm(1 : n, n + 1 : N)T .
(10)

Once s∗
m

is found, if for i > n, s∗m(i) = +1, then, p∗m(i)
is set to the mean of p̄m − {0}; otherwise p∗m(i) = 0. We
repeat minimization of the smoothness term for all appliances
m ∈ M̄.

Note that the above minimization is performed considering
one appliance at a time, which significantly reduced com-
plexity, since we have multiple binary classification problems
where sm(i) takes values +1 and -1, if appliance m was on and
off at time instance i, respectively, or 0 if it is unknown. After
one appliance is disaggregated, its load could be removed from
the aggregate data before disaggregation of the next appliance
starts.

After minimization of the smoothness term, we turn to
the fidelity term to refine the result. It is possible to vary
all p∗m(i) > 0 in a greedy way to minimize ||∆p(i) −
∑

m ∆pm(i)||22 for p∗m(i) ∈ p̄m − {0}. If ||∆p(i) −
∑

m ∆pm(i)||22 is still larger than a pre-defined threshold,
then s∗m(i)’s can be varied one appliance at a time, until the
fidelity term is decreased. This iterative procedure stops once
no improvement is observed. However, to keep the complexity
low, in this paper, we only minimize the smoothness term.
The flow chart of the algorithm is shown in Figure 1. During
the training phase, sm(i) is determined for i < n, using
(2) based on the training dataset. The testing phase consists
of constructing the graph and calculating s∗

m
using (10) and

binary classification for each appliance. The summary of the
algorithmic steps is given below.

Summary of the proposed algorithm.

1) For all appliances m ∈ M̄
2) Calculate Lm using (5).
3) Calculate s∗

m
using (10) and determine p∗m.

4) Remove the load of appliance m from the aggregate
readings.

5) If there are remaining Appliance, then Go to Step 1.
6) Output: p∗m for all m.

The complexity of the approach depends on N −n since it
is necessary to find the pseudo-inverse of an (N−n)×(N−n)
real-valued matrix, which can be done in O((N − n)3) time.
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Fig. 1. Flow chart of the proposed algorithm.

Note that N − n can be made as small as one (as done in the
next section), in which case the decision is made as soon as
the new sample is acquired.

IV. RESULTS AND DISCUSSION

We present next our simulation results of low-rate energy
disaggregation based on GSP and compare the performance
to that of the state-of-the-art method of [11], which is based
on HMM. Results of event-based approaches developed by
authors are discussed in [4], [14], [32], where comparison
with [11] is always provided. We use a dataset from the
publicly available REDD database [18] downsampled to 1min
resolution. For training we use M=200 samples, that is, just
over three hours. For testing, we use 10,000 consecutive
samples, which is almost a week worth of data.

The evaluation metrics used are precision (PR), recall (RE)
and F-Measure (FM ) [33] defined as:

PR = TP/(TP + FP ) (11)

RE = TP/(TP + FN) (12)

FM = 2 ∗ (PR ∗ RE)/(PR + RE), (13)

where true positive (TP) presents the correct claim the detected
appliance was used, false positive (FP) represents an incorrect
claim the appliance was not running, and false negative (FN)
indicates that the appliance operation was not detected. Pre-
cision captures the correctness of estimation - the higher the
PR the few the FPs. On the other hand, high RE means a
low number of FNs, which means that a higher percentage of
power values are estimated correctly. FM balances PR and RE.

In the first simulation, we assess the performance of the
algorithm without any base load and unknown appliances
running. To avoid detecting stand-by settings, in this simu-
lation, we set the threshold to Tr =10W, that is, appliances
operating below 10W are considered inactive - sm(i) = −1
for 0 ≤ ∆pm(i) < 10W and sm(i) = 1 for ∆pm(i) ≥ 10W.



For simplicity, we report results obtained purely by minimizing
the smoothness term. We consider three appliances from House
2, namely, Refrigerator, Microwave, and Toaster, which were
summed up to form an aggregated power signal p(i). Results
are shown in Table I.

It can be seen from the table that the method was successful
in disaggregating the toaster with only 6 FNs and no FPs. A
worse performance for the microwave is due to the fact that
often, the microwave was running only for a minute resulting in
a single high power sample. Since, the methodology is based
on maximizing smoothness of the signal, these events were
sometimes missed. Moreover, the microwave operates at two
different power levels (one around 50W and the other around
1900W), depending on the settings selected. The refrigerator
iterates between the stand-by mode and the cooling up mode.
The cooling-up mode was sometimes missed due to over-
smoothing.

TABLE I. PERFORMANCE OF THE PROPOSED METHOD FOR THREE

APPLIANCES.

Appliance TP FP FN PR RE FM

Refrigerator 474 20 117 0.96 0.80 0.87
Toaster 98 0 12 1 0.89 0.94

Microwave 10 0 50 1 0.17 0.29

To demonstrate the performance in a real setting, we use
House 2 dataset from the REDD database. House 2 contains 6
appliances: stove, toaster, refrigerator, microwave, dishwasher,
and disposal. Since there were only two runs (1 minute
each) of the disposal, this appliance was not considered. We
disaggregate one appliance at the time, starting from highest
consumers, and adaptively reducing the threshold. The results
are shown in Table II. Similarly to the previous example, the
disaggregation of the microwave suffers from low RE due to
a high number of FNs. The number of FPs is high for the
refrigerator and toaster mainly due to over-smoothing. Similar
results can be observed from House 6 dataset, shown in Table
III.

In the above experiments, we set N = M + 1 to reduce
the complexity, to get an insight on practical implementation.
The execution time was just over 2 msec per sample. This
is roughly 4 times less than the average time needed for
the HMM-based approach of [11] to disaggregate a sample.
The programs were executed on Intel Core 2 CPU 2.66GHz
machine running Windows XP and are coded in Matlab2014.

TABLE II. PERFORMANCE OF THE PROPOSED METHOD FOR HOUSE 2
FROM THE REDD DATASET.

Appliance TP FP FN PR RE FM

Stove 19 54 1 0.26 0.15 0.41
Refrigerator 321 161 220 0.67 0.59 0.63

Toaster 93 111 20 0.41 0.82 0.59
Microwave 21 14 105 0.60 0.17 0.26
Dishwasher 7 10 1 0.41 0.88 0.56

Next, we compare the performance to that of the HMM-
based method of [11]. Tables IV and V, show the results for
the two methods, for House 2 and 6, respectively. In both
houses, the HMM method disaggregates better the refrigerator.
It is well known that HMM is successful in disaggregating the
refrigerator due to regular cycles, continuous activities, sole

TABLE III. PERFORMANCE OF THE PROPOSED METHOD FOR HOUSE 6
FROM THE REDD DATASET.

Appliance TP FP FN PR RE FM

Stove 4 0 0 1 1 1
Refrigerator 232 73 320 0.76 0.42 0.54

Toaster 2 0 0 1 1 1
Microwave 6 0 1 1 0.86 0.92

AC 59 108 16 0.35 0.79 0.49
Electric Heater 2 25 8 0.07 0.2 0.11

activities (i.e., without any other appliances running) during
the night and hence huge data availability for learning and
improving initial models [11], [4]. For all other appliances
(except Microwave and Toaster in House 2), the proposed
method shows better performance, at lower testing complexity.
For example, HMM misses all uses of strove and microwave
in House 6, while the proposed method has particularly high
performance for disaggregation of these two appliances. One
reason for low HMM performance for some appliances is
short training period, which is not enough to build good initial
appliance models.

The obtained results are comparable to other HMM-based
methods, such as those of [12] and [34] that reported the total,
‘house-wise’ FM for House 6 0.39 and 0.82, respectively (see
Table I in [34]).

V. CONCLUSION

In this paper, a novel approach for non-intrusive appliance
load monitoring based on the emerging concept of graph signal
processing was proposed. The proposed approach is not state
based, avoiding common problems with conventional state-
based NALM approaches, such as HMM based, related to
high complexity and difficulties of designing efficient event
detection. The optimization problem was formulated based on
regularization on graph signals and a greedy algorithm was
proposed. Experimental results using the publicly available
REDD dataset demonstrate potentials of the approach and
improved performance compared to the state-of-the-art HMM-
based NALM method.

This paper has demonstrated the potential of using a graph-
based signal processing approach for energy disaggregation.
Future work will consist of testing the algorithm using different
datasets, investigating other weight functions for adjacency
matrix, assessing robustness of the algorithm with respect to
noisy and incomplete training dataset, improving the perfor-
mance by avoiding over-smoothing, and assessing near real-
time testing performance.
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TABLE IV. COMPARISON BETWEEN THE PROPOSED METHOD AND HMM-BASED METHOD FOR HOUSE 2 FROM THE REDD DATASET.

Appliance PRp REp FMp
PRHMM REHMM FMHMM

Stove 0.26 0.15 0.41 0.37 0.14 0.21
Refrigerator 0.67 0.59 0.63 0.88 0.92 0.90

Toaster 0.41 0.82 0.59 0.72 0.64 0.68
Microwave 0.60 0.17 0.26 0.33 0.84 0.47
Dishwasher 0.41 0.88 0.56 0.02 0.96 0.04

TABLE V. COMPARISON BETWEEN THE PROPOSED METHOD AND HMM-BASED METHOD FOR HOUSE 6 FROM THE REDD DATASET.

Appliance PRp REp FMp
PRHMM REHMM FMHMM

Stove 1 1 1 0 0.18 0
Refrigerator 0.76 0.42 0.54 0.95 0.82 0.88

Toaster 1 1 1 0 0.5 0
Microwave 1 0.86 0.92 0 0.78 0

AC 0.35 0.79 0.49 0.06 0.99 0.12
Electric Heater 0.07 0.2 0.11 0.02 0.91 0.03
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