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Code Design for MIMO Broadcast Channels
Momin Uppal, Student Member, IEEE, Vladimir Stanković, Member, IEEE, and Zixiang Xiong Fellow, IEEE

Abstract—Recent information-theoretic results show the opti-
mality of dirty-paper coding (DPC) in achieving the full capacity
region of the Gaussian multiple-input multiple-output (MIMO)
broadcast channel (BC). This paper presents a DPC based
code design for BCs. We consider the case in which there is
an individual rate/signal-to-interference-plus-noise ratio (SINR)
constraint for each user. For a fixed transmitter power, we choose
the linear transmit precoding matrix such that the SINRs at users
are uniformly maximized, thus ensuring the best bit-error rate
performance. We start with Cover’s simplest two-user Gaussian
BC and present a coding scheme that operates 1.44 dB from the
boundary of the capacity region at the rate of one bit per real
sample (b/s) for each user. We then extend the coding strategy
to a two-user MIMO Gaussian BC with two transmit antennas
at the base-station and develop the first limit-approaching code
design using nested turbo codes for DPC. At the rate of 1 b/s for
each user, our design operates 1.48 dB from the capacity region
boundary. We also consider the performance of our scheme over
a slow fading BC. For two transmit antennas, simulation results
indicate a performance loss of only 1.4 dB, 1.64 dB and 1.99
dB from the theoretical limit in terms of the total transmission
power for the two, three and four user case, respectively.

Index Terms—Dirty-paper coding, MIMO broadcast channels,
multiple access channel, nested turbo codes, zero-forcing linear
beamforming.

I. INTRODUCTION

AN achievable rate region of a degraded Gaussian broad-
cast channel (BC), where different users receive signals

at different signal-to-interference-plus-noise ratios (SINRs),
was provided by Cover in 1972 [1]. The scheme is based
on superposition coding, where the message for one user
is embedded in that for the other. Bergman [2] showed
that Cover’s rate region is in fact the capacity region by
proving the converse. However, the capacity region of the
Gaussian multiple-input multiple-output (MIMO) BC, where
the channels might not necessarily be degraded, was an open
problem until recently − the rate region found in [3] was first
shown to achieve the sum-rate capacity in [3]–[6] and then
proven to be the actual capacity region in [7].

The core of the capacity-achieving scheme [3] for a Gaus-
sian MIMO BC is a non-linear technique called dirty-paper
coding (DPC) [8], which is a coding technique for channels
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with encoder side information. According to [8], in a Gaussian
interference channel, if the interfering signal is known non-
causally at the transmitter, then there is no loss in capacity due
to the interference. This scenario is typical in the Gaussian BC,
where each user treats messages intended for other users as
interference, which is available non-causally at the transmitter.

DPC is the only optimal, i.e., capacity-achieving, technique
for the non-degraded Gaussian MIMO BC. It provides signif-
icant gains in terms of the achievable rates over suboptimal
techniques (e.g., time-division multiple-access and beamform-
ing) for the MIMO BC in many setups [3], [9], especially
when the signal-to-noise ratio (SNR) is high and the number
of transmit antennas large. Practical DPC involves both source
and channel coding [10], and near-capacity code designs have
appeared recently [11]–[14]. The time is thus ripe to develop
limit approaching DPC-based code designs1 for the MIMO BC
and compare them with others based on suboptimal strategies.

We start with Cover’s simplest yet most celebrated two-
user degraded Gaussian BC [1] and develop a code design
that employs the dirty-paper code of [11] using nested turbo
codes. Owing to the powerful nested turbo codes in DPC,
our code design for the degraded Gaussian BC is superior
to previously reported DPC-based schemes of [17], [18] and
loses only 1.44 dB from the boundary of the capacity region
when transmitting one bit per real sample (b/s) for each user.

Note that, besides DPC, superposition coding [1] also
achieves the capacity of this simple Gaussian BC. The practi-
cal scheme of [19] that exploits superposition coding performs
only 1.0 dB from the minimum total power at one b/s for
each user. However, the drawback of the superposition coding
approach of [19] is that it is not clear how it can be extended
to handle the MIMO Gaussian BC, where the channels are not
necessarily degraded. In contrast to superposition coding, DPC
achieves the capacity of both degraded and non-degraded BCs,
and our DPC-based design for Cover’s Gaussian BC naturally
applies to the MIMO BC. Thus, we additionally consider the
two-user MIMO Gaussian BC with two transmit antennas at
the base-station and develop the first limit-approaching DPC-
based code design under the assumption that the transmitter
and all the receivers have perfect knowledge of the channel
state information (CSI). We point out that in practice, the CSI
might not be perfectly available at the transmitters. However,
as the first step towards developing DPC-based code design
for MIMO broadcast channels, we make such a rather strong
assumption in this paper. Extending our design to the case
with imperfect/partial CSI at the transmitter is the next step,
which we leave to future publications.

1To the best of our knowledge, all existing DPC-based designs [15], [16]
for the MIMO BC use scalar forms of DPC such as Tomlinson-Harashima
precoding and hence incur a large performance loss.
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Most information-theoretic works [3]–[6] on MIMO BCs
focus on maximizing the sum-rate, i.e., the sum of the trans-
mission rates for different users under a fixed total transmis-
sion power constraint. This allows arbitrary rate allocation
to different users depending on the channel coefficients. The
sum-rate maximizing scheme in this case might result in an
unfair rate allocation (e.g., by assigning a very low rate to
one user). However, many applications require the users to
operate at a certain minimum rate/SINR. In addition, our DPC
code design with nested turbo codes [11] operates at a fixed
transmission rate. In light of these two reasons, we fix the rate
of the employed code at each user. Thus, our coding scheme
has the design objective of uniformly maximizing the SINR
for each user, subject to a total transmit power constraint and
certain per user rate/SINR constraints. Compared to the sum-
rate maximizing scheme, our scheme will obviously achieve a
smaller or equal sum-rate. To determine a precoding scheme
at the transmitter that uniformly maximizes the individual
rate/SINR at each user, one can invoke the duality [4], [5],
[20] between the BC and the multiple access channel (MAC);
as shown in [21], optimal precoding can be accomplished
with reasonable computational complexity by employing an
iterative procedure at the encoder.

We employ one conventional channel code for the first
user and one dirty-paper code for each of the remaining
users for coding over MIMO Gaussian BC. Experiments show
that our design for two users and two transmit antennas
operates 1.48 dB from the capacity region boundary. We
also simulate sub-optimal strategies such as zero-forcing DPC
(ZFDPC) and zero-forcing beamforming (ZFBF). However,
the performance gap between the optimal strategy and the
zero-forcing approaches depend on the exact realization of
the channel coefficients. Thus, in order to provide a fair
comparison, we also consider the outage performance of our
design over a slow Rayleigh fading MIMO BC. Simulations
indicate that when the number of transmit antennas is fixed
at two, our practical DPC-based design performs 1.4 dB, 1.64
dB and 1.99 dB worse than the theoretical limits for the two,
three and four user case, respectively. Preliminary results of
this work appeared in [22].

The contributions of this paper are twofold: our DPC-based
design for Cover’s celebrated two-user degraded Gaussian BC
significantly outperforms existing schemes [17], [18], and is
the only scheme in the literature that beats the time-sharing
line (see Fig. 4); we also develop the first limit approaching
code design for the MIMO Gaussian BC using the powerful
turbo-based DPC scheme of [11].

Finally, we point out that recent dirty-paper code designs
[12]–[14] based on vector quantizers and LDPC/irregular
repeat accumulate codes work very well at the low rate regime
(e.g., at 0.25 b/s). However, it is not easy to redesign them
(e.g., the best performing one [14] in this class) to operate
well at high transmission rates for broadcast applications.

II. CHANNEL CAPACITIES

In this section, we give a brief overview of the capacity
regions for the two-user degraded Gaussian BC [1] and the
MIMO Gaussian BC [3].
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Fig. 1. Encoding setup for the two user degraded Gaussian BC.

A. Two-user degraded Gaussian BC

Consider a two-user Gaussian BC with a single-antenna
transmitter which sends signal X ; the two users receive Y1 =
h1X+Z1 and Y2 = h2X+Z2, where Z1 and Z2 are indepen-
dent, identically distributed (i.i.d.) zero-mean Gaussian noises
with unit variances, independent of X , and h1, h2 are constant
channel coefficients. Since the channel is degraded, without
loss of generality, we assume that |h2| > |h1|. The transmitted
signal X is given by X = B[U1, U2]T , where U1 and U2 are
the coded messages intended for user 1 and 2, respectively,
with E[|U1|2], E[|U2|2] ≤ 1; B = [

√
(1 − ρ)P ,

√
ρP ] is the

precoding matrix, with P being the total transmission power
constraint, i.e., E[|X |2] ≤ P , and ρ (0 ≤ ρ ≤ 1) a parameter
that controls the power allocation between the two users.
Cover [1] obtained the capacity region for this setup by using
superposition coding. However, DPC also achieves all points
in the capacity region. Indeed, U2 can be dirty-paper coded
with U1 as the encoder side information as shown in Fig. 1.
This way, user 2 achieves the same rate as if the interference
from U1 were not present. User 1 on the other hand, treats U2

as interference. Then the achievable rates per real dimension
R1 and R2 for user 1 and user 2, respectively, are

R1 ≤ 1
2

log
(

1 +
|h1|2(1 − ρ)P
|h1|2ρP + 1

)
(1)

and

R2 ≤ 1
2

log
(
1 + |h2|2ρP

)
. (2)

Since user 1 always gets a degraded version of the signal
received by user 2, user 2 can also decode U1, provided that
it knows the codebook of user 1. Then, the effective achievable
rate for user 2 is R1 + R2.

B. Non-degraded MIMO BC

When the transmitter employs multiple antennas, the chan-
nels at the users are no longer degraded. However, the DPC
scheme described in the previous subsection can be gener-
alized to MIMO case where a transmitter with M antennas
sends messages to K users, each with a single antenna. If hij

is a complex channel gain between user i (1 ≤ i ≤ K) and
transmit antenna j (1 ≤ j ≤ M ), then Yi =

∑M
j=1 hijXj +Zi

is the complex baseband equivalent of the signal received by
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user i, Xj is the complex baseband equivalent of the transmit-
ted signal at antenna j, and the Zi’s are i.i.d. complex zero-
mean Gaussian noises with unit variances, independent of the
Xj’s. Let Y = [Y1, Y2, . . . , YK ]T , X = [X1, X2, . . . , XM ]T ,
and Z = [Z1, Z2, . . . , ZK ]T ; then the received vector becomes
Y = HX + Z, with hij corresponding to the element at the
ith row and jth column of the K × M channel matrix H.

Let wi be the message intended for user i, then the
transmitter sends X = BU, where B is an M ×K precoding
matrix, and

U = [U1, U2, U3, . . . , UK ]T

= [U1(w1), U2(w2; U1), . . . , UK(wK ; U1, . . . , UK−1)]T

is generated using successive DPC with all K codebooks
being uncorrelated and Gaussian with unit power. Here, Ui =
Ui(wi; U1, . . . , Ui−1), 2 ≤ i ≤ K , indicates that wi is encoded
as the codeword Ui using DPC with the linear combination of
U1, U2, . . . , Ui−1 as the encoder side information (i.e., known
interference).

Let bi be the ith column of the precoding matrix B, then
the M × M transmitter covariance matrix for each user is
a positive semi-definite matrix given by Si = bibH

i , and the
transmitter power constraint is

∑K
i=1 tr(Si) ≤ P . We can now

write the signal received at user i as

Yi = hi

i−1∑
k=1

bkUk + hibiUi + hi

K∑
k=i+1

bkUk + Zi, (3)

where hi represents the ith row of the channel matrix H.
Due to DPC, user i can cancel out the first term, whereas the
second term is the useful signal, and the third is treated as
Gaussian interference. Therefore, the achievable rate RBC

i at
user i satisfies [6]

RBC
i ≤ 1

2
log

(
1 +

hiSihH
i

1 + hi

∑K
k=i+1 SkhH

i

)
, i = 1, . . . , K.

(4)
Note that the rate vector RBC = [RBC

1 , . . . , RBC
K ] is

achievable under a fixed encoding order, where the message
of user i is dirty-paper coded by treating signals for previously
encoded users as known interference. One can therefore obtain
K! different achievable rate vectors, one for each distinct
encoding order. The capacity region of the MIMO BC for a
fixed channel matrix H and a power constraint P is the convex
hull of the union of all rate vectors obtained over all possible
encoding orders and all covariance matrices Si satisfying the
power constraint

∑K
i=1 tr(Si) ≤ P .

C. Duality between the Gaussian BC and MAC

The duality between the capacity regions of the Gaussian
MIMO BC and MAC was pointed out in [4], [5]. Unlike the
achievable rates for the MIMO BC, given by (4), the rates
for the MAC are concave functions of the input covariances.
Therefore, it is easier to find the boundary of the capacity
region of the MAC than that of the BC. By exploiting the
duality [4], [5], the achievable rates for the MIMO BC can be
derived from those of its dual MAC. Here we briefly review
this duality principle which will be used in Section III to
determine optimal precoding.

The dual MAC of the MIMO BC described in Section
II-B has K users, each with a single antenna transmitting
messages simultaneously over Gaussian channels to a single
receiver with M receive antennas. If user i transmits signal
Ui, the sum of the individual transmission powers satisfies the
same power constraint as that of the BC, i.e.,

∑K
i=1 ξi ≤ P ,

where ξi = E[|U2
i |]. The decoding order of the MAC is the

reverse of the encoding order for the dual MIMO BC, i.e., the
signals of users i + 1 (1 ≤ i < K) through K are treated as
perfectly known, and the rest is unknown interference. Then,
the achievable rate for user i is [23]

RMAC
i ≤ 1

2
log

(
|IM +

∑i
k=1 ξkhH

k hk|
|IM +

∑i−1
k=1 ξkhH

k hk|

)
. (5)

According to [4], a transformation which depends on the
channel matrix and the noise statistics can be defined to map
the set of MAC powers {ξi} to the BC transmitter covariance
matrices {Si} and hence {bi}, and vice versa. Moreover,
the sets of achievable rates are equal in both domains, i.e.,
RMAC

i = RBC
i .

III. OPTIMAL PRECODING UNDER INDIVIDUAL RATE

CONSTRAINTS

A code design for MIMO BC requires finding an appropri-
ate precoding matrix B. Previous information-theoretic works
[3]–[6] have mainly focused on evaluating B to maximize the
achievable sum-rate, in which case the encoder and decoder
for each user must be able to operate at an arbitrary code
rate. However, as mentioned earlier, such a scheme might
result in an unfair rate allocation. Also it is not clear how
to design good dirty-paper codes at different rates on the
fly. Therefore, we consider a scenario in which each user is
assumed to operate at a fixed transmission rate, for which
we already have an efficient dirty-paper code design [11].
Note that this strategy, as opposed to the sum-rate maximizing
scheme, cannot optimally allocate rates to the user, and thus
for the same sum-rate the former will suffer a performance
loss compared to the latter, as indicated in Section VI.

Let Ri be the rate of the practical channel code (for i =
1) and the dirty-paper code (for 2 ≤ i ≤ K). We assume
that there is a minimum bit-error rate (BER) requirement at
each user, which translates into a minimum requirement on
the operating SINR. Let the rate-Ri code perform δi dB away
from the corresponding Shannon limit of 10 log10(2

2Ri−1) dB
at the given minimum BER. Then, in order to satisfy the BER
requirement, its operating SINR ηi = hibib

H
i hH

i

1+hi
∑K

k=i+1 bkbH
k

hH
i

must satisfy

ηi ≥ ηo
i = 10 log10(2

2Ri − 1) + δi dB. (6)

For example, the dirty-paper code [11] we use in this work
performs δi = 1.53 dB away from the Shannon limit at
Ri = 1.0 b/s and a BER of 10−5. Since there is a one-to-one
correspondence between the rate Ri of the practical code and
its minimum operating SINR ηo

i given by (6), in the sequel,
we exclusively speak of the SINR constraints instead of the
rate constraints.

Note that for a given transmit power, one might not always
be able to satisfy the minimum SINR requirement. Thus,
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in order to get the best BER performance, we uniformly
maximize the SINR at each user. Specifically, we consider
the following optimization problem:

max
B

β (7)

such that

hibibH
i hH

i

1 + hi

∑K
k=i+1 bkbH

k hH
i

≥ βηo
i , i = 1, . . . , K

and
E[uHBHBu] ≤ P,

where the first K constraints correspond to the SINR re-
quirements and the last one defines the transmitter power
constraint. For the sake of simplicity, we describe the solution
to this optimization procedure for a fixed encoding order. A
search for an encoding order that results in the largest β is
then needed. Such an encoding order can be found by using
the iterative algorithm of [15]. In the following, we discuss
optimal precoding for the case of a degraded Gaussian BC [1]
before moving on to the case of MIMO BC.

A. Precoding for two-user degraded Gaussian BC

The problem here is to find a precoding matrix B that solves
the optimization problem of (7). Recall from Section II-A that
for a given transmit power P , the precoding matrix is given
by B = [

√
(1 − ρ)P ,

√
ρP ]. Thus, the objective is to find

the power allocation parameter ρ which maximizes β. It can
be shown that β is maximized when the SINR constraints and
the power constraint in (7) are all met with equality. Thus, the
optimum ρ∗ and β∗ can be obtained by solving the equations
η1 = |h1|2(1−ρ)P

|h1|2ρP+1 = βηo
1 and η2 = |h2|2ρP = βηo

2 , yielding

ρ∗ =
−
(

ηo
1

|h1|2 + ηo
2

|h2|2
)

+
√

( ηo
1

|h1|2 + ηo
2

|h2|2 )2 + 4 ηo
1ηo

2P
|h2|2

2ηo
1P

(8)

and

β∗ =
ρ∗P |h2|2

η0
2

. (9)

B. Precoding for MIMO BC

In this subsection, we first present an iterative approach to
solving (7), we then discuss some sub-optimal choices of the
precoding matrix B.

1) Optimal precoding: The SINR constraints in (7) in the
case of MIMO BC are not convex. In order to simplify the
problem, we can invoke duality between BC and MAC. As
a result, the problem (7) is equivalent to the following MAC
domain problem:

max
{ξi}

β (10)

such that

ξihi(I +
i−1∑
j=1

ξihH
j hj)−1hH

i ≥ βηo
i , i = 1, . . . , K

and
K∑

k=1

ξk ≤ P.

The optimal choice of {ξi} results in the SINR constraints
and the power constraint being met with equality. Thus, the
optimal β∗ and {ξ∗i } are solutions to the equations obtained by
replacing the K+1 inequalities in (10) by equalities. However,
obtaining a closed form solution to this problem is not easy.
We thus consider an alternative approach which involves
solving the converse problem of (10), i.e., the problem of
finding the minimum transmitter power such that the minimum
SINR constraints of βηo

i are satisfied (here β is assumed to
be a constant). This converse problem can be stated as

min
{ξi}

K∑
k=1

ξk (11)

such that

ξihi(I +
i−1∑
j=1

ξihH
j hj)−1hH

i ≥ βηo
i , i = 1, . . . , K.

The solution to this converse problem also requires the SINR
constraints to be met with equality and can easily be obtained
by following the procedure in [15], [21]. It is obvious that if
the transmitter power in (10) is equal to the optimum objective
function value P ∗ of (11), the optimum β∗ obtained by solving
(10) would the same as the β used in (11). In addition, P ∗ is a
monotonically increasing function of β. Thus, the solution to
(10) can be obtained from the following iterative procedure:

1: Select initial βmin and βmax.
2: β := (βmin + βmax)/2.
3: Solve (11) using procedure in [15], [21] to obtain {ξ∗i }.
Evaluate P ∗ =

∑K
k=1 ξ∗k .

4: If P ∗ > P , βmax = β Else If P ∗ < P , βmin = β.
5: If |P − P ∗| ≥ ε Goto step 2 Else End.

One can then apply the MAC-to-BC transformation of [4] to
obtain the optimal precoding matrix B.

2) Zero-forcing: We briefly mention the two suboptimal
approaches considered in [3], namely, zero-forcing DPC
(ZFDPC) and zero-forcing beamforming (ZFBF) [24]. As the
name zero-forcing suggests, the choice of the precoding matrix
forces the interference at each user to be zero, and hence
induces K non-interfering channels between the transmitter
and the K users.

Let H = GK×KQK×M be the QR decomposition of the
channel matrix obtained by Gram-Schmidt orthogonalization,
where G is a lower triangular matrix, i.e., gij = 0 for j > i,
and Q satisfies QQH = IK . As before, M denotes the number
of transmitter antennas, and K is the number of users each
with a single antenna. The precoding matrix is chosen as B =
QHRK×K , where R is a diagonal matrix. This choice of B
introduces an additional equality constraint in the optimization
problem (7) and ensures that at user i the interference from
all users j > i is forced to zero. With the introduction of the
equality constraint, (7) is equivalent to

max
{|rii|}

β (12)

such that

|giirii|2 ≥ βηo
i , i = 1, . . . , K
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and
K∑

k=1

|rii|2 ≤ P,

the solution to which can be easily obtained as |r∗ii|2 = β∗ηo
i

|gii|2
with β∗ = P

∑K
k=1

|gii|2
ηo

i
.

On the other hand, in ZFBF, the precoding matrix is chosen
as B = H†R, where H† is the pseudo inverse of the channel
matrix H and R is again a diagonal matrix. The received
signal vector in this case is Y = HBU+Z = RU+Z. Thus,
the interfering signals from all users are forced to zero, which
simplifies the code design since DPC is no longer required.
In this case, one needs to solve the following problem:

max
{|rii|}

β (13)

such that
|rii|2 ≥ βηo

i , i = 1, . . . , K

and
M∑

j=1

K∑
k=1

|h†
jkrkk|2 ≤ P.

The solution to the ZFBF problem can be obtained as |r∗ii|2 =
β∗ηo

i with β∗ = P∑
M
j=1

∑
K
k=1 |h†

jk|2ηo
i

(1 ≤ i ≤ K).

Although zero-forcing is near optimal when the sum-rate is
maximized [3], simulations (see Section VI) show that when
considering outage performance in a fading environment, it is
far from optimum in the setup with individual rate constraints.
One disadvantage of zero-forcing is that under individual
rate constraints, it fails when there are more users than the
total number of transmit antennas, i.e., the solution to the
optimization problems (12) and (13) always yields β∗ = 0
when M < K . This problem was recently addressed in
[25], where different suboptimal solutions based on partial
interference cancellation are proposed.

IV. DPC DESIGN BASED ON NESTED TURBO CODES

DPC [8] can be implemented using nested lattice codes [10],
where the source code is nested within a channel code. Chou et
al. [26], [27] reported a turbo-coded trellis-based construction
for DPC by nesting a trellis coded quantization (TCQ) code
inside a turbo-trellis coded modulation (TTCM). However,
owing to the structural dissimilarity between TCQ and TTCM,
the actual performance of TCQ is severely degraded and thus
it affects the overall performance of the scheme, especially at
low transmission rates. An improved design which alleviates
the effect of this structural dissimilarity was proposed in [11]
where a stronger source code referred to as the turbo-like TCQ
was employed. In order to provide a description of how the
improved scheme of [11] works, we first briefly review the
TCQ/TTCM scheme of [26], [27].

The trellis structure in the TCQ/TTCM scheme of [26], [27]
is constructed via a rate-k/n/m concatenated code (denoted
by C1+C2, with C1 being the rate- k

n convolutional code and C2

being the rate- n
m convolutional code) as shown in the encoder

block diagram in Fig. 2 (a). TCQ essentially relies on the
trellis Γ1 formed by C1+C2; the TTCM code consists of a
parallel concatenated code with C2 in both branches. C2 in the
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Fig. 2. Block diagram of (a) the TCQ/TTCM encoder of [26], [27] and (b)
the turbo-like TCQ/TTCM encoder of [11].

bottom branch is preceded by an n-bit symbol interleaver and
followed by an m-bit symbol deinterleaver. The two branches
are multiplexed by taking even/odd-indexed symbols from the
top/bottom branch before PAM.

At the encoder, every (n − k)-bit segment of the message
w is mapped to an n-bit symbol by the pseudo inverse of the
parity-check matrix H of C1 before being added to an output
n-bit symbol of C1. This way, the codewords of C1+C2 are
shifted by a fixed amount as determined by the message w.
Consequently, one coset of TTCM codewords is selected by w
to be used for TCQ, which uses the Viterbi algorithm to search
for its input sequence of k-bit symbols so that the scaled side
information sequence αV is quantized to an output sequence
x. The quantization error sequence U = x − αV is finally
transmitted. At the decoder, the n-bit input symbols to TTCM
(or codewords of C1) are recovered by an iterative BCJR
decoder. Finally, the transmitted message w is reconstructed
by calculating the syndromes of the recovered codewords of
C1.

Whereas the presence of an interleaver in Fig. 2 (a) greatly
boosts the performance of the TTCM code over TCM, the
TCQ source code suffers because the interleaver significantly
increases the number of paths that need to be searched, making
the Viterbi algorithm no longer a viable solution to finding
the closest codeword x to αV . In [26], [27], the bottom
branch of TTCM is simply ignored during TCQ. But the actual
average quantization error E[U2] includes contributions from
both even-indexed symbols from the top branch and odd-
indexed symbols from the bottom branch. This leads to an
extra quantization error in E[U2] that is responsible for the
degradation of the source code performance in TCQ/TTCM.
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In order to reduce this extra quantization error, a nested
turbo code design was proposed in [11] to take into account the
bottom branch of TTCM in source coding. The encoder block
diagram of that code design is depicted in Fig. 2 (b), where
the obvious difference from Fig. 2 (a) is the employment of
a new turbo-like TCQ in place of TCQ. The main difference
between turbo-like TCQ and TCQ lies in the computation of
the input sequences of symbols I = [I(0), . . . , I(L−1)] to the
TTCM encoder. This sequence is evaluated using a soft-output
Viterbi algorithm, which adopts a composite distortion metric
to take both branches into account. This distortion metric is
the same as the TCQ metric for the even positions on the top
branch of TTCM, whereas the distortion for the odd positions
on the bottom branch of TTCM is provided by the trellis Γ2

in the form of a-priori information.
The source coding component of Fig. 2 (b) is referred

to as turbo-like TCQ because it has a parallel concatenated
structure with interleavers Π and Π−1, and more importantly,
it essentially implements the first iteration of turbo TCQ,
which takes advantage of the fact [28] that turbo TCQ gen-
erally improves upon TCQ at the first iteration before losing
ground at subsequent iterations. Without iterative quantization
(or source encoding), the distortion from the bottom branch of
TTCM can only be included in the form of a priori informa-
tion. This limits the improvement of turbo-like TCQ/TTCM
over TCQ/TTCM in terms of source coding performance. To
alleviate the impact of the inaccurate a-priori information from
the bottom branch, another novelty in the code design of [11]
lies in decreasing the percentage of samples processed by
that branch and picking the optimal percentage for best DPC
performance.

Results in [11] indicate that nested turbo coding performs
significantly better than the scheme of [26], [27] at all
transmission rates. For example, at 1.0 b/s, nested turbo
coding performs 1.53 dB away from capacity. In contrast, the
TCQ/TTCM scheme of [26], [27] shows a gap of 2.07 dB
from capacity.

V. OVERALL CODE DESIGN FOR MIMO BC

In this section, we describe the practical coding strategy for
the MIMO BC using the capacity approaching DPC design
of Section IV. According to the capacity achieving scheme
described in Section II-B, user 1 does not have any side
information. Thus, user 1 should employ a traditional channel
code. For our code design we use conventional TTCM and
a PAM constellation for user 1. The remaining users exploit
the turbo-like TCQ/TTCM scheme for DPC. We thus require
one conventional channel code and K − 1 dirty-paper codes.
Our overall DPC-based code design is schematically shown in
Fig. 3. This design is applicable to both the degraded Gaussian
BC and the MIMO Gaussian BC. In the following, we discuss
several issues in applying the turbo-like TCQ/TTCM scheme
to code design for the MIMO BC.

1. Normalization at the receiver: The complex baseband
equivalent of the received signal at user i is given by (3).
In order for user i to decode its message correctly, the user
needs to work with the same constellation as was used at the
encoder for Xi. For this purpose, as indicated in Fig. 3 we
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Fig. 3. Block diagram of our proposed overall DPC-based coding scheme
for MIMO BC.

normalize the received signal at user i by hibi. It is apparent
that this normalization does not affect the received SINR. The
resulting signal can be written as

Y ′
i = Ui(wi; U1, . . . , Ui−1)︸ ︷︷ ︸

Useful signal

+
hi

∑i−1
j=1 bjUj

hibi︸ ︷︷ ︸
Encoder side information

+
hi

∑K
j=i+1 bjUj

hibi︸ ︷︷ ︸
Unknown interference Vi

+
Zi

hibi︸ ︷︷ ︸
Gaussian noise

. (14)

Hence, the side information term in Fig. 3 for the ith (i > 1)

user is given by Vi =
hi

∑ i−1
j=1 bjUj

hibi
.

2. Extension to complex baseband: The theoretical back-
ground in the earlier sections assumes the baseband equivalent
of the coded messages Ui to be complex numbers. In practice
this can be realized by using a two dimensional constellation
such as QAM. However, note that the coded message in the
DPC scheme of Fig. 2 (b) is mapped to a PAM constellation,
indicating that the baseband equivalent of the signals are real.
In order to get a complex output, we combine the outputs
of two independent nested turbo codes (denoted by UI and
UQ), in which the phase of UQ is shifted by 90 degrees
via multiplication by j =

√−1. If V is a complex side
information at the encoder, the side information inputs to the
two encoders are VI = Re{V } and VQ = Im{V }. At the
decoder, the real part of the received signal YI can be tied
to the input of one DPC decoder, while the imaginary part
YQ to another independent decoder. This way we effectively
convert the PAM constellation of our DPC scheme to a QAM
constellation. Note that the same principle can also be applied
to the TTCM code of user 1.

3. CSI at the transmitter: Note that the calculation of
precoding matrices in various schemes in Section III requires
perfect CSI to be available at the transmitter. Moreover,
DPC also implicitly entails the requirement of perfect CSI
at the transmitter. While obtaining this CSI at the receivers
is usually simple, acquiring it perfectly at the transmitter
is often unrealistic in practice. In order to obtain the CSI,
the transmitter should rely on a feedback mechanism from
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the individual users. Even with this feedback, the CSI is
not guaranteed to be available perfectly at the transmitter.
However, as mentioned earlier, for our designs we assume
that the CSI is available at the encoder perfectly before the
transmission begins. We will leave the case of imperfect CSI
at the transmitter as a possible extension to this work.

4. Non-Gaussian interference: As indicated in Section IV,
the codewords of the convolutional code C2 are mapped to
a PAM constellation. This results in an interference at the
decoders which is not Gaussian. The practical decoders should
thus be designed to exploit the non-Gaussian statistics of the
interference. This would require them computing the channel
likelihood values based on the actual noise plus interference
distribution. However, this computation becomes cumbersome,
especially for a large number of interferers and/or a large
constellation size. For the sake of simplicity, our implemented
decoders assume that the noise plus interference is Gaussian
with variance equal to that of the actual distribution. Because
of this assumption, our decoders suffer a performance loss
from the case which exploits the non-Gaussian statistics.
Fortunately, simulations (not included in this paper) indicate
that this performance loss is not significant. Similarly, the
side information Vi in (14) will not be Gaussian, but Costa’s
capacity result [8] holds also for arbitrary side information
[29]. Our simulations with the dirty-paper code construction
of Section IV verify this.

VI. SIMULATION RESULTS

In our code design, we use a 16-state, rate- 1
2 systematic

convolutional code for TTCM. The code polynomial is cho-
sen as the constraint-length four Ungerboeck code for the
PAM constellation (suboptimally to maximize the average
Euclidean distance between TCM codewords). Specifically,
the parity check polynomials for this code are h0(D) = 23
and h1(D) = 10 in octal notation. For the practical DPC
scheme of Section IV, we choose C1 as a 16-state, rate- 1

2 ,
non-systematic convolutional code with generator polynomials
g0(D) = 23 and g1(D) = 10. Code C2, on the other hand, is
a 16-state, rate- 2

3 , systematic convolutional code with parity
check polynomials h0(D) = 23, h1(D) = 10, and h2(D) = 0.
The block length for both TTCM and dirty-paper code is fixed
at 10, 000 samples. In the following, we first present our simu-
lation results for the two-user degraded Gaussian BC followed
by results for MIMO Gaussian BC. The results for MIMO
Gaussian BC include not only the performance of our nested
turbo scheme with optimal precoding, but also with ZFDPC
and ZFBF. However, as mentioned earlier, the performance
gap between the three approaches depends greatly on what the
exact realization of the channel coefficients is. Thus, in order
to provide a fair comparison, we additionally consider the
performance of these strategies over an ensemble of channel
coefficients. Specifically, we analyze the performance based on
an outage measure for the case of slow Rayleigh fading. All
simulations are carried out at equal rates of 1 b/s for each user.
This does not mean that our design only works for equal rate
constraints, since the precoding strategies described in Section
III are valid for any set of (including unequal) rate constraints.
In addition, our DPC scheme based on nested turbo codes has
been designed to work at rates of 0.5, 1.0 and 2.0 b/s in [11],
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Fig. 4. (a) BER vs. the transmission power P for the degraded Gaussian BC,
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√
0.1. The dashed line represents

the capacity. (b) The capacity region for the degraded Gaussian BC with
transmission power P = 17.65 dB, h2 = 1, and h1 =

√
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and can be modified to work at higher rates as well. The
TTCM code can similarly be modified. In short, our schemes
are readily applicable to the case with unequal rate constraints
on the users.

A. Two-user degraded Gaussian BC

We simulate our DPC-based design for Cover’s two-user
degraded Gaussian BC with channel coefficients h1 =

√
0.1

and h2 = 1. Simulations indicate that at a rate of 1.0 b/s and a
BER of 10−5, the TTCM code for user 1 performs δ1 = 0.98
dB, and the dirty-paper code at user 2 performs δ2 = 1.53 dB
away from the Shannon limit. For a given transmit power, we
evaluate the optimal ρ∗ from (8) and thus the optimal B, and
plot the resulting BER averaged over the two users in Fig. 4
(a).

At a BER of 10−5, it is seen that the transmission power
needed to achieve R1 = R2 = 1.0 b/s is 17.65 dB, which
is 1.44 dB away from the minimum required power if ideal
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Fig. 5. BER vs. the transmission power for the two-user MIMO Gaussian
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√
2e2.37j ,

√
3/2e2.14j ], h2 =

[e2.23j , 0.5e0.87j ] and R1 = R2 = 1 b/s.

codes were used. This result is 1.8 dB better than that reported
in [17]. Fig. 4 (b) depicts the capacity region for P = 17.65
dB, which is the required total power for our code design
to operate at R1 = R2 = 1.0 b/s. Our operating point is
significantly above the time-sharing line.

B. Non-degraded MIMO Gaussian BC
We also simulate our design for a two-user MIMO Gaussian

BC with two transmit antennas at the base-station by fixing
the channel coefficients as h1 = [1/

√
2e2.37j,

√
3/2e2.14j]

and h2 = [e2.23j , 0.5e0.87j]. For a given transmit power, we
evaluate the optimum precoding matrix using the procedure
outlined in Section III-B1. We plot the BER (averaged over
the two users) versus the transmitter power curves in Fig. 5. It
is seen that our practical code with optimal precoding performs
only 1.48 dB away from the theoretical limit. Practical coding
with ZFDPC performs 0.88 dB worse than with optimal
precoding, while ZFBF loses an additional 1.18 dB.

C. Non-degraded MIMO fading BC

We assume the channels undergo independent Rayleigh
slow flat fading, i.e., each element of the matrix H is i.i.d.,
circularly symmetric, zero-mean, complex Gaussian with unit
variance, and H is frame-wise constant. For a given realization
of the channel coefficients H and a transmitter power con-
straint P , we compute the maximum β∗(H, P ) (the arguments
indicate that β∗ is a function of H and P) as described in
Section III-B. Thus, the maximum achievable SINR at user
i is β∗ηo

i . The actual BERs at each user will satisfy the
minimum BER requirement if β∗ ≥ 1. In order to analyse
the system performance, we consider the probability of frame
error-like measure Pfe(P ) = Pr(β∗(H, P ) < 1), where the
probability is calculated by averaging over the ensemble of
the channel matrix H. This probability can be thought of as
the outage probability, where an outage event occurs whenever
β∗(H, P ) < 1. Pfe is equivalent to the frame error probability
if the frames at all users are received in error if and only if an
outage event occurs. Note that this might not always be true,

5 10 15 20 25 30

10
−2

10
−1

10
0

P
ro

ba
bi

lit
y 

of
 fr

am
e 

er
ro

r

Maximum transmitter power (dB)

Sum−rate constrained optimal precoding
Individual rate constrained optimal precoding (Theoretical)
Individual rate constrained optimal precoding (Practical)
Individual rate constrained ZFDPC (Theoretical)
Individual rate constrained ZFDPC (Practical)
Individual rate constrained ZFBF (Theoretical)
Individual rate constrained ZFBF (Practical)

(a)

5 10 15 20 25
10

−3

10
−2

10
−1

10
0

P
ro

ba
bi

lit
y 

of
 fr

am
e 

er
ro

r

Maximum transmitted power (dB)

Sum−rate constrained optimal precoding
Individual rate constrained optimal precoding (Theoretical)
Individual rate constrained optimal precoding (Practical)

(b)

Fig. 6. (a) Probability of frame error vs. maximum transmission power P for
K = 2 and M = 2. (b) Probability of frame error vs. maximum transmission
power P for K = 3 and M = 2.

nevertheless we still call this measure as the probability of
frame error.

One can also evaluate Pfe by using an alternative method
which involves calculating the minimum required transmitter
power P ∗(H) such that the set of SINR requirements for
{ηi} in (6) are satisfied (P ∗(H) can be obtained by solving
(11)). Note that β∗ < 1 if and only if P ∗(H) > P , and
thus the probability of frame error can also be evaluated
as Pfe(P ) = Pr(P ∗(H) > P ). We use this method of
evaluating the probability of frame error when discussing our
results. In the following, we evaluate the probability of frame
error versus the transmitter power for the cases when the
number of users or transmit antennas is up to four.

1) Simulations for the two-user case: Fig. 6 (a) compares
code designs based on optimal DPC, ZFDPC, and ZFBF in
terms of the probability of frame error vs. transmission power
for two antennas at the transmitter. At a frame error rate of
1%, compared to the sum-rate capacity (R1 + R2 = 2.0 b/s)
curve [3], our practical DPC-based code design loses 3.70 dB
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in performance. 2.30 dB of this loss is due to the individual
rate constraints R1 = 1.0 and R2 = 1.0 b/s. Practical coding
accounts for the remaining 1.40 dB loss. Compared to optimal
DPC-based design, ZFDPC is approximately 6.50 dB worse
while ZFBF loses an additional 5.50 dB.

2) Simulations for the three-user case: The results for three
users and two transmit antennas are provided in Fig. 6 (b).
Since in this case the number of transmit antennas is less than
the number of users, zero-forcing (both ZFDPC and ZFBF)
does not work. The sum-rate capacity curve is obtained by
using the iterative waterfilling algorithm of [30]. Compared
to this sum-rate capacity curve, our practical DPC-based code
design loses 4.07 dB in performance. About 2.38 dB of this
loss is due to the individual rates being constrained, while the
remaining loss of 1.64 dB is due to practical coding.

With three transmit antennas, the loss due to the constraints
on the individual rates reduces to 1.48 dB, while the practical
coding loss is 1.58 dB. Simulation results show that our prac-
tical DPC-based scheme with optimal precoding outperforms
theoretical ZFDPC and ZFBF by 6.50 dB and 15.50 dB,
respectively.

3) Simulations for the four-user case: The frame error rate
(FER) versus the maximum transmission power curves for four
users and two transmit antennas is provided in Fig. 7 (a); the
loss due to individual rates being constrained is 2.25 dB while
the practical coding loss is 1.99 dB.

In the case with three transmit antennas, the loss due the
constraints on individual rates is 1.28 dB and the practical
coding loss is 1.69 dB.

Fig. 7 (b) shows similar results for the case of four transmit
antennas. Compared to the sum-rate capacity curve, our practi-
cal DPC scheme loses 2.54 dB. This loss can be broken down
into a 0.92 dB loss due to the constraints on the individual
rates, and 1.62 dB because of practical coding. In addition,
it can be observed that ZFPDC is 7.20 dB worse than the
practical DPC scheme with optimal precoding while ZFBF
loses an additional 11.50 dB.
Discussions:
Note that in the results presented above, compared to the
optimal sum-rate maximizing scheme [30], our DPC based
scheme suffers two types of performance losses: one due to
the constraints on individual rates and another from practical
channel coding (for the first user) and DPC (for the remaining
K − 1 users). In the following we make a few intuitive
comments about these two types of losses and how they
change with the number of transmit antennas M and the
number of users K .
Loss due to constraints on individual rates: Our simulations
indicate that, for a fixed number of users and increasing
number of transmit antennas, the performance gap between
the outage curve for the sum-rate capacity and that of the
individual rate constrained scheme decreases. This is because
the rate allocation to the individual users becomes fairer
with increased number of transmit antennas, i.e., the disparity
between different rate allocations reduces. For example, with
a single transmit antenna, the sum-rate maximizing scheme
always allocates all the rate to the user with the best channel
while no rate is allocated to the remaining users. On the
other hand, with two transmit antennas, the optimal strategy
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Fig. 7. (a) Probability of frame error vs. maximum transmission power P for
K = 4 and M = 2. (b) Probability of frame error vs. maximum transmission
power P for K = 4 and M = 4

might not always require allocating zero rate to any one
of the users. Thus, with increased number of antennas, it
becomes more likely that the rate allocations of the sum-
rate maximizing scheme also satisfy the minimum rate/SINR
requirement of the individual rate constraint scheme, leading
to reduced performance loss.

When the number of transmit antennas is fixed, increasing
the number of users affects the loss due to individual rate
constraints in two ways. For a fixed encoding order, increasing
the number of users increases the number of individual rate
constraints, hence, the rate allocation which achieves the sum-
rate capacity would be less likely to satisfy all the individual
rate constraints as well. On the other hand, searching over
all possible encoding orders has an opposite effect, i.e., it
increases the likelihood that the rate allocation of the sum-
rate maximizing scheme also satisfies the individual rate con-
straints. This is because the sum-rate capacity is independent
of the encoding order, but the rate allocation is not. In other
words, different encoding orders result in the same sum-rate
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capacity, but different rate allocations. Thus, the effect on
the overall loss due to individual rate constraints depends on
which one of these two factors outweighs the other. Since the
number of encoding orders grows as K!, for a large number of
users, we expect the effect of the second factor to dominate the
first. Indeed, this is verified by our simulations where for two
transmit antennas, the loss due to individual rate constraints
increases when the number of users is increased from two to
three, but decreases when the number of users is increased
from three to four.

Loss due to practical coding: Our experiments also indicate
that under a fixed number of transmit antennas, increasing
the number of users will lead to a higher practical coding
loss. This is because each additional user incurs a loss due to
practical DPC and thus the overall coding loss increases.

On the other hand, when the number of users is fixed, but
the number of transmit antennas increases, the overall coding
loss decreases. To explain this, we examine the practical cod-
ing loss for a fixed channel matrix H and the fixed encoding
order of Section II-B. For this we use the definition of prob-
ability of frame error which involves the minimum possible
transmitter power, i.e., Pfe(P ) = Pr(P ∗(H) > P ). Thus, as
a first step we attempt to find an expression for the minimum
transmit power in terms of the individual coding losses δi’s.
Let the normalized inner product between the ith and jth row

of the H matrix be denoted by ρij =
hih

H
j

||hi||||hj|| . Following the
iterative procedure for evaluating P ∗(H) as described in [15],
[21], we can write the dual MAC covariance of the ith user as
a function of the performance gap of the individual decoders
from the Shannon’s limit (δ1, . . . , δi), the SINR requirements
(η1, . . . , ηi), and the channel correlations (given by ρij).
The covariances for the first three users are ξ1(δ1, η1) =
δ1η1
||h1||2 , ξ2(δ1, δ2, η1, η2) = δ2η2

||h2||2 (1 − δ1η1
1+δ1η1

|ρ12|2)−1,

and ξ3(δ1, δ2, δ3, η1, η2, η3) = δ3η3
||h3||2

{
1 − δ1η1

1+δ1η1
|ρ13|2 −

δ2η2

(1+δ2η2)(1− δ1η1
1+δ1η1

|ρ12|2)

∣∣∣ρ23 − δ1η1
1+δ1η1

ρ12ρ31

∣∣∣2}−1

. The co-

variances for the remaining users can be written in a similar
manner. We define the overall multiplicative coding loss as the
ratio of total transmit power required by practical coding over
the power required by ideal coding. It is therefore given by
L =

∑K
i=1 ξi(δ1,...,δi,η1,...,ηi)∑
K
i=1 ξi(1,...,1,η1,...,ηi)

. Note that L will heavily depend
on the cross correlations ρij of the channel matrix rows. To
gain an insight into how the correlation affects L, we define
an individual multiplicative loss as li = ξi(δ1,...,δi,η1,...,ηi)

ξi(1,...,1,η1,...,ηi)
.

If pi = ξi(1,...,1,η1,...,ηi)∑K
i=1 ξi(1,...,1,η1,...,ηi)

, then L can be written as a
weighted average of the individual multiplicative losses, i.e.,
L =

∑K
i=1 lipi. With decreasing magnitudes of the cross

correlations ρij , i = 1, . . . , K; j �= i, li will decrease. Thus,
we can bound it by li ≥ δi, with equality when all the cross
correlation terms are zero, i.e., when the corresponding rows
of the channel matrix are orthogonal. The overall loss can
be bounded as L ≥ min(δ1, . . . , δK). On the other hand, we

have li ≤ δi

∏ i−1
j=1(1+δjηj)∏ i−1

j=1(1+ηj)
, with equality when all the cross

correlation magnitudes are one, i.e., when the corresponding
rows of the channel matrix lie in the same direction. Thus,

L ≤ max(δ1, . . . , δK)
∏K

j=1(1+δjηj)∏K
j=1(1+ηj)

.

As seen from the above, even for the three user case,
the expressions for the covariances are coupled in a very
complicated manner. One can expect the expressions to get
even more complex with increased number of users. The
performance gap of the outage curves therefore becomes
particularly hard to analyze in a Rayleigh fading environment.
However, based on the analysis given above, one can gain an
intuitive understanding of the practical loss behavior: with the
same number of users but increased number of antennas, the
coding loss decreases because the probability for the magni-
tudes of the correlation coefficients to be small increases. As
two extreme examples, consider first the case when M = 1,
for which the magnitudes of the correlations ρij are always
one; on the other hand, as M → ∞, the law of large numbers
kicks in and the correlations converge in probability to zero.

Finally, as opposed to the case with optimal precoding,
the practical coding loss with ZFDPC is much easier to
analyze primarily because there is no coupling between
the users. Recall that the transmission power for practi-
cal ZFDPC is given by Ppr =

∑K
i=1

δiηi

|gii|2 , then Ppr ≤
max(δ1, . . . , δK)

∑K
i=1

ηi

|gii|2 = max(δ1, . . . , δK)Pth, where
Pth is the required transmission power when all the decoders
are operating at Shannon’s limit. Thus, regardless of the
number of users, the overall practical coding loss of the
ZFDPC scheme is upper bounded by max(δ1, . . . , δK), which
in our case is 1.53 dB. This is verified by results in Figs. 6
and 7.

VII. CONCLUSIONS

We have presented capacity-approaching code designs for
the degraded Gaussian BC and for the MIMO Gaussian BC.
We also additionally consider the performance of our designs
over a MIMO Rayleigh fading BC. The main component
of our code designs is a practical DPC scheme based on
nested turbo codes. Simulation results for the two-user MIMO
Gaussian BC with two transmit antennas indicate a perfor-
mance loss of only 1.48 dB from the theoretical limit. For
the fading case, our schemes exhibit a practical coding loss
of 1.4, 1.64, and 1.99 dB for two transmit antennas and
two, three, and four users, respectively. Moreover, our results
show a significant performance gain of optimal DPC over
other suboptimal strategies (e.g., time sharing and zero-forcing
linear beamforming).

There are many possible directions for future work. For ex-
ample, one research direction is to study adaptive modulation
and coding in our nested turbo DPC design in order to get
a simple variable rate scheme. Another interesting topic is to
design practical schemes for MIMO BCs when the CSI is not
perfectly available at the transmitter.
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[22] M. Uppal, V. Stanković, and Z. Xiong, “Code designs for MIMO
broadcast channels," in Proc. ISIT’06, Seattle, WA, July 2006.

[23] W. Yu, W. Rhee, S. Boyd, and J. Cioffi, “Iterative water-filling for vector
multiple access channels," IEEE Trans. Inform. Theory, vol. 50, pp. 145-
152, Jan. 2004.

[24] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast
scheduling using zero-forcing beamforming," IEEE J. Select. Areas
Commun., vol. 24, pp. 528-541, Mar. 2006.

[25] A. Dabbagh and D. Love, “Precoding for multiuser broadcast channels
with successive zero-forcing," IEEE Trans. Signal Processing, vol. 55,
pp. 3837-3850, July 2007.

[26] J. Chou, S. Pradhan, and K. Ramchandran, “Turbo coded trellis-based
constructions for data embedding: channel coding with side information,"
in Proc. 35th Asilomar Conf. Signals, Systems Computers, Pacific Grove,
CA, Nov. 2001.

[27] J. Chou, “Channel coding with side information: theory, practice and
applications," Ph.D. dissertation, University of California at Berkeley,
Berkeley, CA, 2002.

[28] V. Chappelier, C. Guillemot, and S. Marinkovic, “Turbo trellis-coded
quantization," in Proc. 3th Intl. Symp. Turbo Codes, Brest, France, Sept.
2003.

[29] A. Cohen and A. Lapidoth, “The Gaussian watermarking game," IEEE
Trans. Inform. Theory, vol. 48, pp. 1639-1667, June 2002.

[30] N. Jindal, W. Rhee, S. Vishwanath, S. A. Jafar, and A. Goldsmith,
“Sum power iterative waterfilling for multi-antenna Gaussian broadcast
channels," IEEE Trans. Inform. Theory, vol. 51, pp. 1570-1580, Apr.
2005.

Momin Uppal received the B.S. degree in Elec-
tronic Engineering with highest distinction from
GIK Institute of Engineering Sciences and Technol-
ogy, Pakistan, in 2002. He received the M.S. degree
in Electrical Engineering from Texas A&M Univer-
sity in 2006, where he is currently pursuing the
Ph.D. degree. His research interests include dirty-
paper coding, broadcast channels, and cooperative
communications.
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