21 research outputs found

    Long-term assessment of surface water quality in a highly managed estuary basin

    Get PDF
    Anthropogenic developments in coastal watersheds cause significant ecological changes to estuaries. Since estuaries respond to inputs on relatively long time scales, robust analyses of long-term data should be employed to account for seasonality, internal cycling, and climatological cycles. This study characterizes the water quality of a highly managed coastal basin, the St. Lucie Estuary Basin, FL, USA, from 1999 to 2019 to detect spatiotemporal differences in the estuary’s water quality and its tributaries. The estuary is artificially connected to Lake Okeechobee, so it receives fresh water from an external basin. Monthly water samples collected from November 1999 to October 2019 were assessed using principal component analysis, correlation analysis, and the Seasonal Kendall trend test. Nitrogen, phosphorus, color, total suspended solids, and turbidity concentrations varied sea-sonally and spatially. Inflows from Lake Okeechobee were characterized by high turbidity, while higher phosphorus concentrations characterized inflows from tributaries within the basin. Differences among tributaries within the basin may be attributed to flow regimes (e.g., significant releases vs. steady flow) and land use (e.g., pasture vs. row crops). Decreasing trends for orthophosphate, total phosphorus, and color and increasing trends for dissolved oxygen were found over the long term. Decreases in nutrient concentrations over time could be due to local mitigation efforts. Understanding the differences in water quality between the tributaries of the St. Lucie Estuary is es-sential for the overall water quality management of the estuary

    Long-Term Assessment of Surface Water Quality in a Highly Managed Estuary Basin

    Get PDF
    Anthropogenic developments in coastal watersheds cause significant ecological changes to estuaries. Since estuaries respond to inputs on relatively long time scales, robust analyses of long-term data should be employed to account for seasonality, internal cycling, and climatological cycles. This study characterizes the water quality of a highly managed coastal basin, the St. Lucie Estuary Basin, FL, USA, from 1999 to 2019 to detect spatiotemporal differences in the estuary’s water quality and its tributaries. The estuary is artificially connected to Lake Okeechobee, so it receives fresh water from an external basin. Monthly water samples collected from November 1999 to October 2019 were assessed using principal component analysis, correlation analysis, and the Seasonal Kendall trend test. Nitrogen, phosphorus, color, total suspended solids, and turbidity concentrations varied seasonally and spatially. Inflows from Lake Okeechobee were characterized by high turbidity, while higher phosphorus concentrations characterized inflows from tributaries within the basin. Differences among tributaries within the basin may be attributed to flow regimes (e.g., significant releases vs. steady flow) and land use (e.g., pasture vs. row crops). Decreasing trends for orthophosphate, total phosphorus, and color and increasing trends for dissolved oxygen were found over the long term. Decreases in nutrient concentrations over time could be due to local mitigation efforts. Understanding the differences in water quality between the tributaries of the St. Lucie Estuary is essential for the overall water quality management of the estuary

    Water productivity mapping methods using remote sensing

    No full text
    The goal of this paper was to develop methods and protocols for water productivity mapping (WPM) using remote sensing data at multiple resolutions and scales in conjunction with field-plot data. The methods and protocols involved three broad categories: (a) Crop Productivity Mapping (CPM) (kg/m2); (b) Water Use (evapotranspiration) Mapping (WUM)(m3/m2); and (c) Water Productivity Mapping (WPM) (kg/m3). First, the CPMs were determined using remote sensing by: (i) Mapping crop types; (ii) modeling crop yield; and (iii) extrapolating models to larger areas. Second, WUM were derived using the Simplified Surface Energy Balance (SSEB) model. Finally, WPMs were produced by dividing CPMs and WUMs. The paper used data from Quickbird 2.44m, Indian Remote Sensing (IRS) Resoursesat-1 23.5m, Landsat-7 30m, and Moderate Resolution Imaging Spectroradiometer (MODIS) 250m and 500m, to demonstrate the methods for mapping water productivity (WP). In terms of physical water productivity (kilogram of yield produced per unit of water delivered), wheat crop had highest water productivity of 0.60 kg/m3 (WP), followed by rice with 0.5 kg/m3, and cotton with 0.42 kg/m3. In terms of economic value (dollar per unit of water delivered), cotton ranked highest at 0.5/m3followedbywheatwith 0.5/m3 followed by wheat with 0.33/m3 and rice at $ 0.10/m3. The study successfully delineated the areas of low and high WP. An overwhelming proportion (50+%) of the irrigated areas were under low WP for all crops with nly about 10% area in high WP
    corecore