142 research outputs found

    It takes two to tango: mast cell and Schwann cell interactions in neurofibromas

    Get PDF

    Malignant peripheral nerve sheath tumors in neurofibromatosis type 1: a multicenter project with 3 clinical trials

    Get PDF
    ReportA major goal of this CTDA proposal is to optimize subject recruitment in each of the clinical trials. Using the prevalence estimate for NF1 as 1 in 3,500 individuals in the population at large coupled with the cross-sectional estimate of 5% affected by MPNST, we acknowledge that few centers will have more than 2 patients with MPNST and NF1 in any given year. We anticipate 1 in 1,750,000 people will develop MPNST and NF1 on an annual basis, thus the populations of the US, Canada, and Europe will provide a maximum of 50 cases per year. Our goal is to recruit at least 2/3 of this cohort for enrollment in at least 1 of the 3 clinical trials. By developing a well-publicized network of NF1 Clinic Centers and Sarcoma Centers, we plan to offer enrollment to every individual in North America and Europe who has MPNST and NF1 into the case-control trial to identify risk factors for MPNST (clinical trial project 1). Based on inclusion and exclusion criteria, some individuals will be eligible for the clinical trial of neoadjuvant chemotherapy, and this will be offered to them as a treatment option (clinical trial project 3)

    Malignant Peripheral Nerve Sheath Tumors State of the Science: Leveraging Clinical and Biological Insights into Effective Therapies.

    Get PDF
    Malignant peripheral nerve sheath tumor (MPNST) is the leading cause of mortality in patients with neurofibromatosis type 1. In 2002, an MPNST consensus statement reviewed the current knowledge and provided guidance for the diagnosis and management of MPNST. Although the improvement in clinical outcome has not changed, substantial progress has been made in understanding the natural history and biology of MPNST through imaging and genomic advances since 2002. Genetically engineered mouse models that develop MPNST spontaneously have greatly facilitated preclinical evaluation of novel drugs for translation into clinical trials led by consortia efforts. Continued work in identifying alterations that contribute to the transformation, progression, and metastasis of MPNST coupled with longitudinal follow-up, biobanking, and data sharing is needed to develop prognostic biomarkers and effective prevention and therapeutic strategies for MPNST

    Malignant Peripheral Nerve Sheath Tumors State of the Science: Leveraging Clinical and Biological Insights into Effective Therapies.

    Get PDF
    Malignant peripheral nerve sheath tumor (MPNST) is the leading cause of mortality in patients with neurofibromatosis type 1. In 2002, an MPNST consensus statement reviewed the current knowledge and provided guidance for the diagnosis and management of MPNST. Although the improvement in clinical outcome has not changed, substantial progress has been made in understanding the natural history and biology of MPNST through imaging and genomic advances since 2002. Genetically engineered mouse models that develop MPNST spontaneously have greatly facilitated preclinical evaluation of novel drugs for translation into clinical trials led by consortia efforts. Continued work in identifying alterations that contribute to the transformation, progression, and metastasis of MPNST coupled with longitudinal follow-up, biobanking, and data sharing is needed to develop prognostic biomarkers and effective prevention and therapeutic strategies for MPNST

    Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice

    Get PDF
    Neurofibromatosis type 1 (NF1) is a common genetic disorder affecting 1 in 3500 individuals. Patients with NF1 are predisposed to debilitating skeletal manifestations, including osteopenia/osteoporosis and long bone pseudarthrosis (nonunion fracture). Hyperactivation of the Ras/mitogen-activated protein kinase (MAPK) pathway in NF1 is known to underlie aberrant proliferation and differentiation in cell lineages, including osteoclast progenitors and mesenchymal stem cells (MSCs) also known as osteoblast progenitors (pro-OBLs). Our current study demonstrates the hyper Ras/MAPK as a critical pathway underlying the pathogenesis of NF1-associated fracture repair deficits. Nf1-deficient pro-OBLs exhibit Ras/MAPK hyperactivation. Introduction of the NF1 GTPase activating-related domain (NF1 GAP-related domain) in vitro is sufficient to rescue hyper Ras activity and enhance osteoblast (OBL) differentiation in Nf1−/− pro-OBLs and NF1 human (h) MSCs cultured from NF1 patients with skeletal abnormalities, including pseudarthrosis or scoliosis. Pharmacologic inhibition of mitogen-activated protein kinase kinase (MEK) signaling with PD98059 partially rescues aberrant Erk activation while enhancing OBL differentiation and expression of OBL markers, osterix and osteocalcin, in Nf1-deficient murine pro-OBLs. Similarly, MEK inhibition enhances OBL differentiation of hMSCs. In addition, PD98059 rescues aberrant osteoclast maturation in Nf1 haploinsufficient bone marrow mononuclear cells (BMMNCs). Importantly, MEK inhibitor significantly improves fracture healing in an NF1 murine model, Col2.3CreNf1flox/−. Collectively, these data indicate the Ras/MAPK cascade as a critical pathway in the pathogenesis of bone loss and pseudarthrosis related to NF1 mutations. These studies provide evidence for targeting the MAPK pathway to improve bone mass and treat pseudarthrosis in NF1

    cDNA sequence and genomic structure of EVI2B, a gene lying within an intron of the neurofibromatosis type 1 gene

    Full text link
    The gene responsible for neurofibromatosis type 1 (NF1), one of the more common inherited human disorders, was identified recently, and segments of it were cloned. Two translocation breakpoints that interrupt the NF1 gene in NF1 patients flank a 60-kb segment of DNA that contains the EVI2A locus (previously reported as the EVI2 locus), the human homolog of a mouse gene, Evi-2A, implicated in retrovirus-induced murine myeloid tumors. EVI2A lies within an intron of the NF1 gene and is transcribed from telomere toward centromere, opposite to the direction of transcription of the NF1 gene. Here we describe a second locus, EVI2B, also located between the two NF1 translocation breakpoints. Full-length cDNAs from the EVI2B locus detect a 2.1-kb transcript in bone marrow, peripheral blood mononuclear cells, and fibroblasts. Sequencing studies predict an EVI2B protein of 448 amino acids that is proline-rich and contains an N-terminal signal peptide, an extracellular domain with four potential glycosylation sites, a single hydrophobic transmembrane domain, and a cytoplasmic hydrophilic domain. At the level of genomic DNA the EVI2B locus lies within the same intron of the NF1 gene as EVI2A and contains a 57-bp 5' exon that is noncoding, an 8-kb intron, and a 2078-bp 3' exon that includes the entire open reading frame. EVI2B is transcribed in the same direction as EVI2A; its 5' exon lies only 4 kb downstream from the 3' exon of the EVI2A locus. In the mouse the 5' exon of the homologous gene, Evi-2B, lies approximately 2.8 kb from the 3' end of Evi-2A, in the midst of a cluster of viral integration sites identified in retrovirus-induced myeloid tumors; thus, Evi-2B may function as an oncogene in these tumors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29439/1/0000521.pd

    Genomic patterns of malignant peripheral nerve sheath tumor (MPNST) evolution correlate with clinical outcome and are detectable in cell-free DNA

    Get PDF
    Malignant peripheral nerve sheath tumor (MPNST), an aggressive soft-tissue sarcoma, occurs in people with neurofibromatosis type 1 (NF1) and sporadically. Whole-genome and multiregional exome sequencing, transcriptomic, and methylation profiling of 95 tumor samples revealed the order of genomic events in tumor evolution. Following biallelic inactivation of NF1, loss of CDKN2A or TP53 with or without inactivation of polycomb repressive complex 2 (PRC2) leads to extensive somatic copy-number aberrations (SCNA). Distinct pathways of tumor evolution are associated with inactivation of PRC2 genes and H3K27 trimethylation (H3K27me3) status. Tumors with H3K27me3 loss evolve through extensive chromosomal losses followed by whole-genome doubling and chromosome 8 amplification, and show lower levels of immune cell infiltration. Retention of H3K27me3 leads to extensive genomic instability, but an immune cell-rich phenotype. Specific SCNAs detected in both tumor samples and cell-free DNA (cfDNA) act as a surrogate for H3K27me3 loss and immune infiltration, and predict prognosis

    CDK19-related disorder results from both loss-of-function and gain-of-function de novo missense variants

    Get PDF
    Purpose To expand the recent description of a new neurodevelopmental syndrome related to alterations in CDK19. Methods Individuals were identified through international collaboration. Functional studies included autophosphorylation assays for CDK19 Gly28Arg and Tyr32His variants and in vivo zebrafish assays of the CDK19(G28R) and CDK19(Y32H). Results We describe 11 unrelated individuals (age range: 9 months to 14 years) with de novo missense variants mapped to the kinase domain of CDK19, including two recurrent changes at residues Tyr32 and Gly28. In vitro autophosphorylation and substrate phosphorylation assays revealed that kinase activity of protein was lower for p.Gly28Arg and higher for p.Tyr32His substitutions compared with that of the wild-type protein. Injection of CDK19 messenger RNA (mRNA) with either the Tyr32His or the Gly28Arg variants using in vivo zebrafish model significantly increased fraction of embryos with morphological abnormalities. Overall, the phenotype of the now 14 individuals with CDK19-related disorder includes universal developmental delay and facial dysmorphism, hypotonia (79%), seizures (64%), ophthalmologic anomalies (64%), and autism/autistic traits (56%). Conclusion CDK19 de novo missense variants are responsible for a novel neurodevelopmental disorder. Both kinase assay and zebrafish experiments showed that the pathogenetic mechanism may be more diverse than previously thought.Peer reviewe
    • …
    corecore