4,651 research outputs found

    Stellar mass-loss near the Eddington limit. Tracing the sub-photospheric layers of classical Wolf-Rayet stars

    Full text link
    Towards the end of their evolution hot massive stars develop strong stellar winds and appear as emission line stars, such as WR stars or LBVs. The quantitative description of the mass loss in these important pre-SN phases is hampered by unknowns such as clumping and porosity due to an in-homogeneous wind structure, and by an incomplete theoretical understanding of optically thick stellar winds. In this work we investigate the conditions in deep atmospheric layers of WR stars to find out whether these comply with the theory of optically thick winds, and whether we find indications of clumping in these layers. We use a new semi-empirical method to determine sonic-point optical depths, densities, and temperatures for a large sample of WR stars of the carbon (WC) and oxygen (WO) sequence. Based on an artificial model sequence we investigate the reliability of our method and its sensitivity to uncertainties in stellar parameters. We find that the WR stars in our sample obey an approximate relation with P_rad/P_gas~80 at the sonic point. This 'wind condition' is ubiquitous for radiatively driven, optically thick winds, and sets constraints on possible wind/envelope solutions affecting radii, mass-loss rates, and clumping properties. Our results suggest that the presence of an optically thick wind may force many stars near the Eddington limit to develop clumped, radially extended sub-surface zones. The clumping in these zones is most likely sustained by the non-linear strange-mode instability, and may be the origin of the observed wind clumping. The properties of typical late-type WC stars comply with this model. Solutions without sub-surface clumping and inflation are also possible but demand for compact stars with comparatively low mass-loss rates. These objects may resemble the small group of WO stars with their exceptionally hot stellar temperatures and highly ionized winds.Comment: accepted by A&

    Narrow He II emission in star-forming galaxies at low metallicity. Stellar wind emission from a population of Very Massive Stars

    Full text link
    In a recent study star-forming galaxies with HeII emission between redshifts 2 and 4.6 have been found to occur in two modes, distinguished by the width of their HeII emission lines. Broad HeII emission has been attributed to stellar emission from a population of evolved Wolf-Rayet (WR) stars while narrow HeII emission has been attributed to nebular emission excited by a population of very hot PopIII stars formed in pockets of pristine gas at moderate redshifts. In this work we propose an alternative scenario for the origin of the narrow HeII emission, namely very massive stars (VMS) at low metallicity (Z) which form strong but slow WR-type stellar winds due to their proximity to the Eddington limit. We estimate the expected HeII line fluxes and equivalent widths based on wind models for VMS and population synthesis models, and compare the results with recent observations of star-forming galaxies at moderate redshifts. The observed HeII line strengths and equivalent widths are in line with what is expected for a population of VMS in one or more young super-clusters located within these galaxies. In our scenario the two observed modes of HeII emission originate from massive stellar populations in distinct evolutionary stages at low Z. If this interpretation is correct there is no need to postulate the existence of PopIII stars at moderate redshifts to explain the observed narrow HeII emission. An interesting possibility is the existence of self-enriched VMS with similar WR-type spectra at extremely low Z. Stellar HeII emission from such very early generations of VMS may be detectable in future studies of star-forming galaxies at high redshifts with the James Webb Space Telescope. The fact that the HeII emission of VMS is largely neglected in current population synthesis models will generally affect the interpretation of the integrated spectra of young stellar populations.Comment: 4 pages, 1 figure, A&A letters (accepted

    Bladvlekken zomerbloemen : meer veroorzakers, dus extra alert reageren

    Get PDF
    Bladvlekkenziekten veroorzaken regelmatig problemen in de teelten van verschillende soorten zomerbloemen. Bladvlekken kunnen door verschillende ziekteverwekkende schimmels worden veroorzaakt

    Bladvlekken in zomerbloemen 2 : vervolg op onderzoek 2007-2008

    Get PDF
    Bladvlekkenziekten veroorzaken regelmatig problemen in de teelten van verschillende soorten zomerbloemen. Bladvlekken kunnen door verschillende ziekteverwekkende schimmels worden veroorzaakt. Om een betrouwbaar en gericht advies te geven is het van belang om te weten welk organisme de bladvlekken veroorzaakt. In dit project zijn monsters met bladvlekken bij telers verzameld en is met behulp van de infectieproeven getracht de veroorzaker aan te wijzen

    Jets as diagnostics of the circumstellar medium and the explosion energetics of supernovae: the case of Cas A

    Full text link
    We present hydrodynamical models for the Cassiopeia A (Cas A) supernova remnant and its observed jet / counter-jet system. We include the evolution of the progenitor's circumstellar medium, which is shaped by a slow red supergiant wind that is followed by a fast Wolf-Rayet (WR) wind. The main parameters of the simulations are the duration of the WR phase and the jet energy. We find that the jet is destroyed if the WR phase is sufficiently long and a massive circumstellar shell has formed. We therefore conclude that the WR phase must have been short (a few thousand yr), if present at all. Since the actual jet length of Cas A is not known we derive a lower limit for the jet energy, which is ~10^{48} erg. We discuss the implications for the progenitor of Cas A and the nature of its explosion.Comment: 9 pages, 5 figures, ApJ accepted. Version with high resolution figures available at http://www.phys.uu.nl/~schure/CasA_jet.pd

    The main transition in the Pink membrane model: finite-size scaling and the influence of surface roughness

    Full text link
    We consider the main transition in single-component membranes using computer simulations of the Pink model [D. Pink {\it et al.}, Biochemistry {\bf 19}, 349 (1980)]. We first show that the accepted parameters of the Pink model yield a main transition temperature that is systematically below experimental values. This resolves an issue that was first pointed out by Corvera and co-workers [Phys. Rev. E {\bf 47}, 696 (1993)]. In order to yield the correct transition temperature, the strength of the van der Waals coupling in the Pink model must be increased; by using finite-size scaling, a set of optimal values is proposed. We also provide finite-size scaling evidence that the Pink model belongs to the universality class of the two-dimensional Ising model. This finding holds irrespective of the number of conformational states. Finally, we address the main transition in the presence of quenched disorder, which may arise in situations where the membrane is deposited on a rough support. In this case, we observe a stable multi-domain structure of gel and fluid domains, and the absence of a sharp transition in the thermodynamic limit.Comment: submitted to PR

    An explanation for the curious mass loss history of massive stars: from OB stars, through Luminous Blue Variables to Wolf-Rayet stars

    Get PDF
    The stellar winds of massive stars show large changes in mass-loss rates and terminal velocities during their evolution from O-star through the Luminous Blue Variable phase to the Wolf-Rayet phase. The luminosity remains approximately unchanged during these phases. These large changes in wind properties are explained in the context of the radiation driven wind theory, of which we consider four different models. They are due to the evolutionary changes in radius, gravity and surface composition and to the change from optically thin (in continuum) line driven winds to optically thick radiation driven winds.Comment: Accepted for publication in Astronomy and Astrophysics (Letter to the Editor

    Cladosporium Ă©n Botrytis belangrijkste oorzaken bladvlekken in pioenroos

    Get PDF
    De schimmels Cladosporium paeoniae en Botrytis spp. veroorzaken verschillende soorten bladvlekken in pioenroos. PPO zocht uit welke schimmels of bacteriën in de bladvlekken aanwezig waren. Met deze kennis is het mogelijk om bladvlekkenziekten gerichter aan te pakken

    On the nature of the bi-stability jump in the winds of early-type supergiants

    Get PDF
    We study the origin of the observed bi-stability jump in the terminal velocity of the winds of supergiants near spectral type B1. To this purpose, we have calculated a grid of wind models and mass-loss rates for these stars. The models show that the mass-loss rate 'jumps' by a factor of five around spectral type B1. Up to now, a theoretical explanation of the observed bi-stability jump was not yet provided by radiation driven wind theory. The models demonstrate that the subsonic part of the wind is dominated by the line acceleration due to Fe. The elements C, N and O are important line drivers in the supersonic part of the wind. We demonstrate that the mass-loss rate 'jumps' due to an increase in the line acceleration of Fe III below the sonic point. Finally, we discuss the possible role of the bi-stability jump on the mass loss during typical variations of Luminous Blue Variable stars.Comment: Accepted by A&A, 19 pages Latex, 10 figure
    • …
    corecore