16 research outputs found

    Construcción y uso de instrumentos para la enseñanza de la caracterización térmica de materiales. "Do it yourself"

    No full text
    En este trabajo se presentan los resultados obtenidos en el proyecto de aprendizaje basado en la construcción de instrumentos de caracterización térmica que fue desarrollado bajo el apoyo de la convocatoria de innovación educativa aplicando tecnología NOVUS 2012. Este proyecto ofrece la oportunidad de aprendizaje basado en investigación en el que los alumnos, además de aprender sobre una técnica de caracterización térmica de materiales desarrollan conocimientos sobre la adquisición de datos, programación gráfica y la construcción de equipos de medición. El proyecto se basó en tres objetivos a desarrollar: la capacitación de los alumnos en la metodología de adquisición de datos, la construcción de instrumentos de caracterización térmica y el uso de estos instrumentos en el salón de clase y en proyectos de investigación. Con en este esquema de aprendizaje activo se logró motivar el interés de los alumnos para lograr una experiencia de aprendizaje integral. Los productos de aprendizaje se reflejaron en la realización de proyectos de investigación cuyos resultados han sido presentados por alumnos en congresos nacionales e internacionales.Iniciativa Novu

    Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations

    No full text
    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure–electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of –OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of –OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules

    Long-Term Stability of New Co-Amorphous Drug Binary Systems: Study of Glass Transitions as a Function of Composition and Shelf Time

    No full text
    The amorphous state is of particular interest in the pharmaceutical industry due to the higher solubility that amorphous active pharmaceutical ingredients show compared to their respective crystalline forms. Due to their thermodynamic instability, drugs in the amorphous state tend to recrystallize; in order to avoid crystallization, it has been a common strategy to add a second component to hinder the crystalline state and form a thermally stable co-amorphous system, that is to say, an amorphous binary system which retains its amorphous structure. The second component can be a small molecule excipient (such as a sugar or an aminoacid) or a second drug, with the advantage that a second active pharmaceutical ingredient could be used for complementary or combined therapeutic purposes. In most cases, the compositions studied are limited to 1:1, 2:1 and 1:2 molar ratios, leaving a gap of information about phase transitions and stability on the amorphous state in a wider range of compositions. In the present work, a study of novel co–amorphous formulations in which the selection of the active pharmaceutical ingredients was made according to the therapeutic effect is presented. Resistance against crystallization and behavior of glass transition temperature ( T g were studied through calorimetric measurements as a function of composition and shelf time. It was found that binary formulations with T g temperatures higher than those of pure components presented long-term thermal stability. In addition, significant increments of T g values, of as much as 15 ∘ C, were detected as a result of glass relaxation at room temperature during storage time; this behavior of glass transition has not been previously reported for co-amorphous drugs. Based on these results, it can be concluded that monitoring behavior of T g and relaxation processes during the first weeks of storage leads to a more objective evaluation of the thermomechanical stability of an amorphous formulation

    Chemical stability of chalcogenide infrared glass fibers

    No full text
    International audienceInfrared fibers from the chalcogenide family are becoming increasingly prevalent for applications in optical sensing and imaging. In this work, we study the chemical stability of these fibers during long-term storage in air and medium term immersion in water comparable to normal usage conditions during optical monitoring in aqueous environments. A detailed study of surface oxidation in Te-As-Se fibers shows that the oxidation is limited to a superficial layer and progress at a rate of about 20 Å per year. While the elemental glass is insoluble in water, the oxide layer solubilizes rapidly and can lead to surface pitting after oxide removal. The dissolution process is complete after about 2 h of immersion in water. The elemental glass on the other end is chemically stable in water and no significant oxidation process can be detected by cyclic voltammetry. Finally the useful optical properties of these fibers are essentially unchanged after extended storage or immersion in water despite surface oxide or surface pitting

    Co-Amorphous Simvastatin-Nifedipine with Enhanced Solubility for Possible Use in Combination Therapy of Hypertension and Hypercholesterolemia

    No full text
    The high index of simultaneous incidence of hypertension and hypercholesterolemia in the population of many countries demands the preparation of more efficient drugs. Therefore, there is a significant area of opportunity to provide as many alternatives as possible to treat these illnesses. Taking advantage of the solubility enhancement that can be achieved when an active pharmaceutical ingredient (API) is obtained and stabilized in its amorphous state, in the present work, new drug-drug co-amorphous formulations (Simvastatin SIM- Nifedipine NIF) with enhanced solubility and stability were prepared and characterized. Results show that the co-amorphous system (molar ratio 1:1) is more soluble than the pure commercial APIs studied separately. Aqueous dissolution profiles showed increments of solubility of 3.7 and 1.7 times for SIM and NIF, correspondingly, in the co-amorphous system. The new co-amorphous formulations, monitored in time, (molar fractions 0.3, 0.5 and 0.7 of SIM) remained stable in the amorphous state for more than one year when stored at room temperature and did not show any signs of crystallization when re-heating. Inspection on the remainder of a sample after six hours of dissolution showed no recrystallization, confirming the stability of co-amorphous system. The enhanced solubility of the co-amorphous formulations makes them promising for simultaneously targeting of hypertension and hypercholesterolemia through combination therapy

    Pt-Co3O4 Superstructures by One-Pot Reduction/Precipitation in Bicontinuous Microemulsion for Electrocatalytic Oxygen Evolution Reaction

    No full text
    Bicontinuous microemulsions (BCME) were used to synthesize hierarchical superstructures (HSs) of Pt-Co3O4 by reduction/precipitation. BCMEs possess water and oil nanochannels, and therefore, both hydrophilic and lipophilic precursors can be used. Thus, PtAq-CoAq, PtAq-CoOi, PtOi-CoAq and PtOi-CoOi were prepared (where Aq and Oi stand for the precursor present in aqueous or oily phase, respectively). The characterization of the Pt-Co3O4-HS confirmed the formation of metallic Pt and Co3O4 whose composition and morphology are controlled by the initial pH and precursor combination, determining the presence of the reducing/precipitant species in the reaction media. The electrocatalytic activity of the Pt-Co3O4-HSs for oxygen evolution reaction (OER) was investigated using linear sweep voltammetry in 0.1 M KOH and compared with Pt-HS. The lowest onset overpotentials for Pt-Co3O4-Hs were achieved with PtOi-CoOi (1.46 V vs. RHE), while the lowest overpotential at a current density of 10 mA cm−2 (η10) was obtained for the PtAq-CoAq (381 mV). Tafel slopes were 102, 89, 157 and 92 mV dec−1, for PtAq-CoAq, PtAq-CoOi, PtOi-CoAq and PtOi-CoOi, respectively. The Pt-Co3O4-HSs showed a better performance than Pt-HS. Our work shows that the properties and performance of metal–metal oxide HSs obtained in BCMEs depend on the phases in which the precursors are present

    Development and Validation of a Rapid Analytical Method for the Simultaneous Quantification of Metabolic Syndrome Drugs by HPLC-DAD Chromatography

    No full text
    Worldwide, 25% of the population suffers from metabolic syndrome (MetS). The treatment of patients with MetS regularly includes drugs prescribed simultaneously to treat several disorders that manifest at the same time, such as hypercholesterolemia, arterial hypertension, and diabetes. To the authors’ best knowledge, there is no previous published analytical method for the simultaneous quantification of drugs used in the treatment of these diseases. In the present study, a rapid high-performance liquid chromatography with a diode-array detector HPLC-DAD methodology was developed for simultaneous quantification of carvedilol (CVD), telmisartan (TEL), bezafibrate (BZT), gliclazide (GZD), and glimepiride (GMP) in bulk and pharmaceutical form. The chromatographic separation of the five pharmaceuticals was achieved on a Hypersil GOLD C18 Selectivity (5 µm, 150 × 4.60 mm2) using a mobile phase of acetonitrile (50%) and 0.02 M KH2PO4, pH 3 (50%) at a flow rate of 1 mL/min and at 25 °C. The total separation time was 9 min. The analytical method was validated following the International Conference on Harmonization guidelines. A reproducible method was obtained with acceptable limits of detection (LOD) and quantification (LOQ) for CVD (0.012 and 0.035 μg mL−1), TEL (0.103 and 0.313 μg mL−1), BZT (0.025 and 0.076 μg mL−1), GZD (0.039 and 0.117 μg mL−1), and GMP (0.064 and 0.127 μg mL−1). The validated method allowed the determination of these drugs in commercial pharmaceutical products both individually and simultaneously. The present method was found to be suitable for simultaneous quantification of the five drugs that are most commonly used in the simultaneous treatment of the metabolic syndrome
    corecore