5 research outputs found

    Aerodynamics at NASA JSC

    Get PDF
    A viewgraph presentation describing aerodynamics at NASA Johnson Space Center is shown. The topics include: 1) Personal Background; 2) Aerodynamic Tools; 3) The Overset Computational Fluid Dynamics (CFD) Process; and 4) Recent Applicatoins

    Effects of the Orion Launch Abort Vehicle Plumes on Aerodynamics and Controllability

    Get PDF
    Characterization of the launch abort system of the Multi-purpose Crew Vehicle (MPCV) for control design and accurate simulation has provided a significant challenge to aerodynamicists and design engineers. The design space of the launch abort vehicle (LAV) includes operational altitudes from ground level to approximately 300,000 feet, Mach numbers from 0-9, and peak dynamic pressure near 1300psf during transonic flight. Further complicating the characterization of the aerodynamics and the resultant vehicle controllability is the interaction of the vehicle flowfield with the plumes of the two solid propellant motors that provide attitude control and the main propulsive impulse for the LAV. These interactions are a function of flight parameters such as Mach number, altitude, dynamic pressure, vehicle attitude, as well as parameters relating to the operation of the motors themselves - either as a function of time for the AM, or as a result of the flight control system requests for control torque from the ACM. This paper discusses the computational aerodynamic modeling of the aerodynamic interaction caused by main abort motor and the attitude control motor of the MPCV LAV, showing the effects of these interactions on vehicle controllability

    OVERFLOW Simulations of Space Shuttle Orbiter Reentry Based on As-Built Geometry

    Get PDF
    The Space Shuttle Orbiters Discovery and Endeavor have been digitally scanned to obtain outer mold line surfaces. Using these scans, the existing overset computational fluid dynamics (CFD) grid system will be modified by projecting the grid points to the scanned geometry. Simulations will be performed using the OVERFLOW solver and the results compared to previous OVERFLOW results on the theoretical geometry and the aerodynamic databook. The "bent airframe" term will be compared between the aerodynamic databook and the computations over a range of reentry conditions

    Simulations of SSLV Ascent and Debris Transport

    Get PDF
    A viewgraph presentation on Computational Fluid Dynamic (CFD) Simulation of Space Shuttle Launch Vehicle (SSLV) ascent and debris transport analysis is shown. The topics include: 1) CFD simulations of the Space Shuttle Launch Vehicle ascent; 2) Debris transport analysis; 3) Debris aerodynamic modeling; and 4) Other applications

    CFD Support for STS-107 Ascent Investigation

    No full text
    The research described in this viewgraph presentation investigates the ascent of STS-107 and foam-debris impact, and contributes to understanding of the STS-107 accident using CFD tools. The goals of the research are to: 1) Quantify loads on foam bipod ramp during ascent; 2) Provide steady-state flow-fields to debris-transport simulations; 3) Simulate flight of foam debris using unsteady six-degree-of-freedom calculations; 4) Provide estimates of foam mass, velocity, and impact angle which correlate with video and film evidence
    corecore