https://ntrs.nasa.gov/search.jsp?R=20060028488 2019-08-29T22:13:52+00:00Z

Source of Acquisition NASA Johnson Space Center

Aerodynamics at NASA JSC

Darby J. Vicker EG – Aeroscience and Flight Mechanics Division EG3 – Applied Aeroscience & CFD Branch NASA Johnson Space Center Houston, Texas

Presentation Outline

- Personal Background
- Aerodynamic Tools
- The Overset Computational Fluid Dynamics (CFD) Process
- Recent applications
 - X-38
 - V-131r Vehicle Scan
 - AEDC Wind Tunnel Test

- Shuttle

- STS-107 Investigation
- Return to Flight

Personal Background

- Born and raised in Des Moines, IA
- <u>Aug 1997 Aug 1999</u>, 4 co-op tours
 - EP4, Propulsion and Fluid Systems
 - EG3, Applied Aeroscience and CFD
 - EM, Manufacturing "The Shops"
 - EG5, Advanced Mission Design
- <u>May 2000</u>, graduated from Iowa State University with a Bachelors degree, Aerospace Engineering

3

- <u>August 2000</u>, hired by NASA/EG3
- January 2001, started Masters degree at Rice University

Aerodynamic Tools

X-38 Crew Return Vehicle

Flight Test

Wind Tunnel Test

CFD

The Overset CFD Process What is CFD? – A "numerical wind tunnel"

- Geometry Database (CAD)
 - Mathematical Surface (Continuous)
- Surface Grids
 - Computational surface (discrete)
 - May arbitrarily overlap
- Volume Grids
 - Computational domain
- Flow Solution
 - Define flight conditions
 - Apply boundary conditions
 - Solve Navier-Stokes eq'ns
- Data Extraction
 - Calculate and validate the desired results

V-131R Analysis

- Background
 - "Unplanned maneuver" occurred during the first drop test of V131R
 - Post-flight analysis revealed an unmodeled aerodynamic force as the primary cause
 - A bent airframe was the prime suspected
- CFD used to characterize the bent airframe aero
- Photogrammetric scan of the vehicle was performed to obtain surface geometry
 - 1.6 million points total in scan average $\Delta s = 0.4$ " (lower in high curvature areas)
 - IGES surfaces created from point cloud
- CFD grids were created on the "as-built" IGES surfaces

2" above

V-131R Analysis

- Solutions obtained using OVERFLOW with the "as-built" grids
- Surface C_p delta between CAD and "as-built"

X-38 Model G Wind Tunnel Test

- Arnold Engineering and Development Center 16' transonic tunnel (AEDC 16T) in Tullahoma, TN
 - Pressure sensitive paint (PSP) data collection system

Wind Tunnel Grids

Tunnel/Model G Grid System 76 zones, 8.5 million points

Pressure Sensitive Paint

- Intensity based PSP system
 - Paint is excited by xenon lights
 - Light intensity emitted is dependant on the pressure
- Allows collection of high-resolution pressure distributions in WT

10

PSP vs. CFD

Mach 0.95, Alpha 16°, Beta 0°, Flap 20°, Rudder 0°

CFD Cp

PSP Cp

==

11

STS-107 Investigation

- Known:
 - Flight conditions at debris shedding
 - Debris came from left bipod ramp
 - Foam density approx 2.4 lbs/cu ft
- Unknown:
 - Debris shape, size, mass
 - Initial conditions
- Desire:
 - Possible impact locations
 - Impact velocity
 - Impact angle

Left bi-pod ramp

Note: video evidence suggests impact velocities from 669 – 853 ft/sec: ambiguity due to distortions, lack of high-resolution / high-speed cameras .

Return-to-Flight

- Bipod ramps have been removed
- Shape change \rightarrow Change in aerodynamics

Old Configuration: Bipod Ramps New Configuration: Bare Spindle

Improvement of ET CFD Grid

Grid Comparison Detail

New CFD grids

Old CFD Grids

Flow Visualization – Mach 1.55

Mach contours in Z = 564 inch cutting plane

Orbiter $\Delta Cp - Mach 1.55$

19

Inboard LO₂ Line Δ Cp – Mach 1. 55

Wind Tunnel Test (IA-613) Comparisons - External Tank - Phi = 180° CFD conditions: $M_{\infty} = 2.50$, $\alpha = 2.03^{\circ}$, $\beta = 0.00^{\circ}$, Reynolds $\# = 2.50 \times 10^{6}$ /ft, IB elevon = 4.07° , OB elevon = -4.39° WTT conditions: $M_{\infty} = 2.50$, $\alpha = 2.03^{\circ}$, $\beta = 0.00^{\circ}$, Reynolds $\# = 2.50 \times 10^{6}$ /ft, IB elevon = 4.07° , OB elevon = -4.39°

CFD vs. IA-613B Wing Pressures Mach 2.50, Y = -250"

From WTT report: as measured elevons are: Left IB = $4.07^{\circ}\pm 0.09$, Left OB = $-4.39^{\circ}\pm 0.11$

CFD conditions: $M_{\infty} = 2.50$, $\alpha = 2.03^{\circ}$, $\beta = 0.00^{\circ}$, Reynolds $\# = 2.50 \times 10^{6}$ /ft, B elevon = 4.00°, OB elevon = -5.00° WTT conditions: $M_{\infty} = 2.50$, $\alpha = 2.03^{\circ}$, $\beta = 0.00^{\circ}$, Reynolds $\# = 2.50 \times 10^{6}$ /ft, B elevon = 4.00°, OB elevon = -5.00°

CFD vs. IA-613B Wing Pressures Mach 2.50, Y = -250"

CFD run with as measured elevons

CFD conditions: $M_{\infty} = 2.50$, $\alpha = 2.03^{\circ}$, $\beta = 0.00^{\circ}$, Reynolds $\# = 2.50 \times 10^{6}$ /ft, IB elevon = 4.07°, OB elevon = -4.39° WTT conditions: $M_{\infty} = 2.50$, $\alpha = 2.03^{\circ}$, $\beta = 0.00^{\circ}$, Reynolds $\# = 2.50 \times 10^{6}$ /ft, IB elevon = 4.07°, OB elevon = -4.39°

CFD vs. IA-613B Left SRB Pressures $Mach \ 1.25, \ \Phi = 180^{\circ}$ CFD conditions: M_w = 1.25, α = -3.95°, β = 0.00°, Reynolds # = 2.50 x10⁶/ft, IB elevon = 10.00°, OB elevon = 5.00°

WTT conditions: $M_{\infty} = 1.25$, $\alpha = -3.95^{\circ}$, $\beta = -0.00^{\circ}$, Reynolds $\# = 2.50 \times 10^6$ /ft, IB elevon = 10.00°, OB elevon = 5.00°

