269 research outputs found

    The Effect of 2,3,5-triiodobenzoic Acid on Flax

    Get PDF
    Through the study of environmental control of plant growth, it has become known that external factors control the internal hormonal factors. The time and amount of hormone produced control the plant growth. It therefore has become of interest, since the discovery of growth regulators, to think about artificial application of hormones and antihormones. The selection, timing and amount of hormone applied are very important. The desired result is an alteration of the life cycle of the plant in such a manner that an increase in yield is achieved

    Therapeutic opportunities for targeting cold pain pathways

    Get PDF
    Cold pain is a frequent symptom in neuropathic pain. Compared to other pain modalities, such as heat pain, the mechanisms behind physiological and pathological cold pain remain elusive. Moreover, it is becoming increasingly evident that cold pain pharmacology differs between various neuropathic pain conditions, making mechanism-directed treatment based on an understanding of the underlying pathophysiological mechanisms imperative to achieving clinical success. Here we review the processes of physiological and abnormal cold sensing, the pharmacology of cold nociception, cold hyperalgesia and cold allodynia, and provide an overview of cold pain syndromes and their current and potential treatments

    Simple Methods for Determining the Accuracy of Tumor Blood Flow Measurements Using Radioactive Microspheres in Rats

    Get PDF
    Two simple methods are presented that allow positive identification of the accuracy and precision of the microsphere technique and a quick verification of sphere entrapment in tumor vessels. A known flow of Ringer\u27s solution from a motor-driven syringe is perfused through the rat\u27s isolated systemic circulation from left ventricle to right atrium and collected in a funnel. Using this preparation, total blood flow in rats measured with radioactive microspheres injected into the left ventricle was 97% of actual flow. The coefficient of variation (standard deviation/mean) of the microsphere measurements was 0.22. In the same preparation, non-entrapment of microspheres in subcutaneous tumor nodules grown on a hind limb could be measured from the difference in counts collected in venous effluent before and after placement of a tourniquet proximal to the tumor. For example, in two types of transplantable carcinoma, we found non-entrapment of less than 0.1% of the injected microspheres. Such a shunt would correspond to less than 10% of microspheres entering a typical tumor nodule and, in turn, less than 10% underestimation of true flow to the tumor. These two techniques may be helpful to other investigators in testing the accuracy of microsphere methods in various small animal tumor models

    Abnormal Response of Tumor Vasculature to Vasoactive Drugs

    Get PDF
    The effects of the vasoconstrictor, phenylephrine, and the vasodilator, hydralazine, on blood flow to tumor were studied and compared to those on blood flow to normal tissues in vivo. Regional blood flow and cardiac output were measured with the use of radioactive microspheres in 150- to 250 g inbred Harlan F344 rats bearing subcutaneous nodules of two types of transplantable carcinoma ( hard and soft ) with microscopically different vascular patterns. Three groups of rats were treated with hydralazine, saline, or phenylephrine, and regional blood flow was determined at the time of maximum blood pressure response. Results were correlated with quantitative morphometric analysis of arteriolar and capillary wall thickness in tumor and normal tissue. Phenylephrine decreased, and hydralazine increased, normal tissue perfusion as indicated by cardiac output. Tumor blood flow remained low and was not significantly influenced by drug treatment, except for the phenylephrine effect on hard tumors. Histological study of tumor vessel walls revealed· an absence of smooth muscle capable of responding to the vasoactive drugs by constriction or dilation. Evidently, by their selective action on normal vessels, vasoactive drugs can change the ratio of tumor to normal tissue perfusion. In particular, the increase of normal tissue vs. tumor blood flow by vasodilator drugs may enhance the selectivity of local heat therapy

    Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells

    Get PDF
    The human neuroblastoma cell line SH-SY5Y is a potentially useful model for the identification and characterisation of Na(v) modulators, but little is known about the pharmacology of their endogenously expressed Na(v)s. The aim of this study was to determine the expression of endogenous Na(v) α and β subunits in SH-SY5Y cells using PCR and immunohistochemical approaches, and pharmacologically characterise the Na(v) isoforms endogenously expressed in this cell line using electrophysiological and fluorescence approaches. SH-SY5Y human neuroblastoma cells were found to endogenously express several Na(v) isoforms including Na(v)1.2 and Na(v)1.7. Activation of endogenously expressed Na(v)s with veratridine or the scorpion toxin OD1 caused membrane depolarisation and subsequent Ca(2+) influx through voltage-gated L- and N-type calcium channels, allowing Na(v) activation to be detected with membrane potential and fluorescent Ca(2) dyes. μ-Conotoxin TIIIA and ProTxII identified Na(v)1.2 and Na(v)1.7 as the major contributors of this response. The Na(v)1.7-selective scorpion toxin OD1 in combination with veratridine produced a Na(v)1.7-selective response, confirming that endogenously expressed human Na(v)1.7 in SH-SY5Y cells is functional and can be synergistically activated, providing a new assay format for ligand screening.NHMRC Program Grant: 056992

    ω-Conotoxin GVIA mimetics that bind and inhibit neuronal Cav2.2 ion channels

    Get PDF
    The neuronal voltage-gated N-type calcium channel (Cav2.2) is a validated target for the treatment of neuropathic pain. A small library of anthranilamide-derived ω-Conotoxin GVIA mimetics bearing the diphenylmethylpiperazine moiety were prepared and tested using three experimental measures of calcium channel blockade. These consisted of a 125I-ω-conotoxin GVIA displacement assay, a fluorescence-based calcium response assay with SH-SY5Y neuroblastoma cells, and a whole-cell patch clamp electrophysiology assay with HEK293 cells stably expressing human Cav2.2 channels. A subset of compounds were active in all three assays. This is the first time that compounds designed to be mimics of ω-conotoxin GVIA and found to be active in the 125I-ω-conotoxin GVIA displacement assay have also been shown to block functional ion channels in a dose-dependent manner

    Analgesic treatment of ciguatoxin-induced cold allodynia

    Get PDF
    Ciguatera, the most common form of nonbacterial ichthyosarcotoxism, is caused by consumption of fish that have bioaccumulated the polyether sodium channel activator ciguatoxin. The neurological symptoms of ciguatera include distressing, often persistent sensory disturbances such as paraesthesias and the pathognomonic symptom of cold allodynia. We show that intracutaneous administration of ciguatoxin in humans elicits a pronounced axon-reflex flare and replicates cold allodynia. To identify compounds able to inhibit ciguatoxin-induced Na-v responses, we developed a novel in vitro ciguatoxin assay using the human neuroblastoma cell line SH-SY5Y. Pharmacological characterisation of this assay demonstrated a major contribution of Na(v)1.2 and Na(v)1.3, but not Na(v)1.7, to ciguatoxin-induced Ca2+ responses. Clinically available Nav inhibitors, as well as the K(v)7 agonist flupirtine, inhibited tetrodotoxin-sensitive ciguatoxin-evoked responses. To establish their in vivo efficacy, we used a novel animal model of ciguatoxin-induced cold allodynia. However, differences in the efficacy of these compounds to reverse ciguatoxin-induced cold allodynia did not correlate with their potency to inhibit ciguatoxin-induced responses in SH-SY5Y cells or at heterologously expressed Nav1.3, Na(v)1.6, Na(v)1.7, or Na(v)1.8, indicating cold allodynia might be more complex than simple activation of Na-v channels. These findings highlight the need for suitable animal models to guide the empiric choice of analgesics, and suggest that lamotrigine and flupirtine could be potentially useful for the treatment of ciguatera. (C) 2013 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved

    A comprehensive portrait of the venom of the giant red bull ant, Myrmecia gulosa, reveals a hyperdiverse hymenopteran toxin gene family

    Get PDF
    Ants (Hymenoptera: Formicidae) are diverse and ubiquitous, and their ability to sting is familiar to many of us. However, their venoms remain largely unstudied. We provide the first comprehensive characterization of a polypeptidic ant venom, that of the giant red bull ant, Myrmecia gulosa. We reveal a suite of novel peptides with a range of posttranslational modifications, including disulfide bond formation, dimerization, and glycosylation. One venom peptide has sequence features consistent with an epidermal growth factor fold, while the remaining peptides have features suggestive of a capacity to form amphipathic helices. We show that these peptides are derived from what appears to be a single, pharmacologically diverse, gene superfamily (aculeatoxins) that includes most venom peptides previously reported from the aculeate Hymenoptera. Two aculeatoxins purified from the venom were found to be capable of activating mammalian sensory neurons, consistent with the capacity to produce pain but via distinct mechanisms of action. Further investigation of the major venom peptide MIITX1-Mg1a revealed that it can also incapacitate arthropods, indicative of dual utility in both defense and predation. MIITX1-Mg1a accomplishes these functions by generating a leak in membrane ion conductance, which alters membrane potential and triggers neuronal depolarization. Our results provide the first insights into the evolution of the major toxin gene superfamily of the aculeate Hymenoptera and provide a new paradigm in the functional evolution of toxins from animal venoms.ARC, NHMR

    Does self-monitoring reduce blood pressure? Meta-analysis with meta-regression of randomized controlled trials

    Get PDF
    Introduction. Self-monitoring of blood pressure (BP) is an increasingly common part of hypertension management. The objectives of this systematic review were to evaluate the systolic and diastolic BP reduction, and achievement of target BP, associated with self-monitoring. Methods. MEDLINE, Embase, Cochrane database of systematic reviews, database of abstracts of clinical effectiveness, the health technology assessment database, the NHS economic evaluation database, and the TRIP database were searched for studies where the intervention included self-monitoring of BP and the outcome was change in office/ambulatory BP or proportion with controlled BP. Two reviewers independently extracted data. Meta-analysis using a random effects model was combined with meta-regression to investigate heterogeneity in effect sizes. Results. A total of 25 eligible randomized controlled trials (RCTs) (27 comparisons) were identified. Office systolic BP (20 RCTs, 21 comparisons, 5,898 patients) and diastolic BP (23 RCTs, 25 comparisons, 6,038 patients) were significantly reduced in those who self-monitored compared to usual care (weighted mean difference (WMD) systolic −3.82 mmHg (95% confidence interval −5.61 to −2.03), diastolic −1.45 mmHg (−1.95 to −0.94)). Self-monitoring increased the chance of meeting office BP targets (12 RCTs, 13 comparisons, 2,260 patients, relative risk = 1.09 (1.02 to 1.16)). There was significant heterogeneity between studies for all three comparisons, which could be partially accounted for by the use of additional co-interventions. Conclusion. Self-monitoring reduces blood pressure by a small but significant amount. Meta-regression could only account for part of the observed heterogeneity
    • …
    corecore