140 research outputs found

    Comparison of personality traits among patients with psoriasis, atopic dermatitis, and stress: a pilot study

    No full text
    Background: Psoriasis and atopic dermatitis are chronic skin diseases that greatly affect the quality of life. Both diseases can be triggered or exacerbated by stress. Objective: We aimed to differentiate personality traits between patients with chronic skin conditions and people treated for stress in a pilot study. Methods: Patients participating voluntarily in educational programs in Belgium and Switzerland were recruited to complete personality trait questionnaires, including the Temperament and Character Inventory (TCI) and the Tridimensional Personality Questionnaire (TPQ). A comparison was made with patients treated for work-related stress. Results: A total of 48 and 91 patients suffering from skin diseases and work-related stress, respectively, were included in the study. Based on the questionnaires, we found that dermatology patients were less persistent and impulsive than those with work-related stress. Dermatology patients also exhibited more rigidness and less focus on performance. Finally, patients with work-related stress seem more likely to change in response to health-promoting programs than patients with chronic dermatoses. Conclusion: Patients with chronic skin diseases may perceive and cope with stress differently in comparison to patients with work-related stress due to inherent personality traits. Therefore, stress coping mechanisms may differ among different diseases. More research is needed into the design of educational interventions and the impact of personality traits in disease-specific groups

    Analytical calculation of fracture toughness of materials on tests of small-sized samples with a chevron notch

    Get PDF
    On the example of technical titanium VT1-0, a new technique for determining the crack resistance of materials is described in the data of tests of small-sized samples with a chevron notch. The problem of displacement the points of application of the part load due to the variation in the compliance of the sample during the propagation of a crack is solved. Equations for the calculation of the specific fracture energy from the experimental data of small-sized samples with a chevron notch are obtained

    Sustainable Materials and Biorefinery Chemicals from Agriwastes

    Get PDF
    This is an open access chapter distributed under the terms of the Creative Commons Attribution License.-- et al.Countries with economies based on agriculture generate vast amounts of low or null value wastes which may even represent an environmental hazard. In our group, agricultural industrial wastes have been converted into value added liquid substances and materials with several aims: decreasing pollution, giving added value to wastes and working in a sustainable manner in which the wastes of an industry can be used as the raw materials of the same or others, as the “cradle to cradle” philosophy states [1]. Sub-products from the agricultural food industry are being employed as renewable low cost raw materials in the preparation of Ecomaterials, designed for use in a number of industrial processes of great interest. Given their origin, these materials may compete with conventional ones since with this process a sustainable cycle is closed, in which the residues of one industry are used as raw materials in the same or other industries [2]. With regards to the composition of the residues produced from agriculture, the pH of soil is of great importance, since plants can only absorb the minerals that are dissolved in water and pH is mandatory for the physical, chemical and biological properties of soil and the main cause of many agronomic questions related to nutrient assimilation [3-5]. Variations of pH modify the solubility of most elements necessary for the development of crops and also influence the microbian activity of soil, which will affect the transformation of elements that are liberated to the soil and can be assimilated to form crops or not [3]. For example at pH lower than 6 or higher than 8 bacterian activities are lowered, the oxidation of nitrogen to nitrate is reduced and the amount of nitrogen available for plant food is decreased. However Al, Fe and manganese are more soluble at low pHs, reaching even toxic concentrations. Potassium and sulphur are easily adsorbed at pH higher than 6, calcium and magnesium between 7 and 8.5 and iron at pH lower than 6. For alkaline pH in soil, the availability of H2PO4-can be reduced through precipitation of phosphorous containing salts withcations such as calcium Ca2+ or magnesium Mg2+. However when soils have acid pH other compounds with HPO42-and iron (Fe2+), aluminium (Al3+) and manganese (Mn2+) can form, with increased solubility. The main factors that influence soil pH are the mineral composition and how it meteorizes, the decomposition of organic matter, how nutrients are partitioned among the solution and aggregates and of course the pluviometryof the zone and atmospheric contamination.Lower pHs are found in places with high pluviometry, with high organic matter decomposition, young soils developed on acid substrates, and places with high atmospheric contamination (acid rain). Depending on the species, crops can benefit from calcareous soils with high calcium carbonate content such as alfalfa, but other plants prefer soils with acid pH such as potatoes, coffee or tobacco. It is clear that different seasons will produce plants with a varying composition depending on the atmospheric conditions and therefore the materials derived from them need to be characterised and analysed to determine their possible uses.Given its multidisciplinary approach, this work is being carried out through the collaboration among national (Institute of Materials Science of Madrid (ICMM, CSIC), Institute of Catalysis (ICP, CSIC), Centre of Molecular Biology Severo Ochoa (UAM-CSIC), Polytechnic University of Madrid (UPM), University at distance (UNED), University Complutense of Madrid (UPM) and international (University of Sheffield and University of Ghent) research groups, in addition to various industries interested in the transformation of their residues and or sub-products into “value added materials”, with whom various research projects have been and are being sponsored by the MICINN and CDTI.Peer Reviewe
    corecore