4 research outputs found
Active mechanics reveal molecular-scale force kinetics in living oocytes
Active diffusion of intracellular components is emerging as an important
process in cell biology. This process is mediated by complex assemblies of
molecular motors and cytoskeletal filaments that drive force generation in the
cytoplasm and facilitate enhanced motion. The kinetics of molecular motors have
been precisely characterized in-vitro by single molecule approaches, however,
their in-vivo behavior remains elusive. Here, we study the active diffusion of
vesicles in mouse oocytes, where this process plays a key role in nuclear
positioning during development, and combine an experimental and theoretical
framework to extract molecular-scale force kinetics (force, power-stroke, and
velocity) of the in-vivo active process. Assuming a single dominant process, we
find that the nonequilibrium activity induces rapid kicks of duration 300 s resulting in an average force of 0.4 pN on vesicles
in in-vivo oocytes, remarkably similar to the kinetics of in-vitro myosin-V.
Our results reveal that measuring in-vivo active fluctuations allows extraction
of the molecular-scale activity in agreement with single-molecule studies and
demonstrates a mesoscopic framework to access force kinetics.Comment: 20 pages, 4 figures, see ancillary files for Supplementary Materials,
* equally contributing author
RHAMM deficiency disrupts folliculogenesis resulting in female hypofertility
The postnatal mammalian ovary contains the primary follicles, each comprising an immature oocyte surrounded by a layer of somatic granulosa cells. Oocytes reach meiotic and developmental competence via folliculogenesis. During this process, the granulosa cells proliferate massively around the oocyte, form an extensive extracellular matrix (ECM) and differentiate into cumulus cells. As the ECM component hyaluronic acid (HA) is thought to form the backbone of the oocyte-granulosa cell complex, we deleted the relevant domain of the Receptor for HA Mediated Motility (RHAMM) gene in the mouse. This resulted in folliculogenesis defects and female hypofertility, although HA-induced signalling was not affected. We report that wild-type RHAMM localises at the mitotic spindle of granulosa cells, surrounding the oocyte. Deletion of the RHAMM C-terminus in vivo abolishes its spindle association, resulting in impaired spindle orientation in the dividing granulosa cells, folliculogenesis defects and subsequent female hypofertility. These data reveal the first identified physiological function for RHAMM, during oogenesis, and the importance of this spindle-associated function for female fertility
RHAMM deficiency disrupts folliculogenesis resulting in female hypofertility
The postnatal mammalian ovary contains the primary follicles, each comprising an immature oocyte surrounded by a layer of somatic granulosa cells. Oocytes reach meiotic and developmental competence via folliculogenesis. During this process, the granulosa cells proliferate massively around the oocyte, form an extensive extracellular matrix (ECM) and differentiate into cumulus cells. As the ECM component hyaluronic acid (HA) is thought to form the backbone of the oocyte-granulosa cell complex, we deleted the relevant domain of the Receptor for HA Mediated Motility (RHAMM) gene in the mouse. This resulted in folliculogenesis defects and female hypofertility, although HA-induced signalling was not affected. We report that wild-type RHAMM localises at the mitotic spindle of granulosa cells, surrounding the oocyte. Deletion of the RHAMM C-terminus in vivo abolishes its spindle association, resulting in impaired spindle orientation in the dividing granulosa cells, folliculogenesis defects and subsequent female hypofertility. These data reveal the first identified physiological function for RHAMM, during oogenesis, and the importance of this spindle-associated function for female fertility
Identification of Partners of Tif34, a Component of the Yeast Eif3 Complex, Required for Cell Proliferation and Translation Initiation
Eukaryotic initiation factor-3 (eIF3) in the yeast saccharomyces cerevisiae plays a central role in initiation of translation. The eIF3 complex contains at least eight different proteins, but, as yet, little is kniwn about the function of the individual proteins. In this study we have characterized the role of TIF34 (eLF3-p39), a recently identified WD- 40 domain-containing protein of 39 kDa, in the eIF3 complex. Using temperature-sensitive mutants of TIF34 we show that this protein is required for cell cycle progression and for mating and plays an essential role in initiation of protein synthesis. By two-hybrid screening we have identified two partmers that directly associate with TIF34: PRT1, a previously characterized eIF3 subunit, and a nocel protein of 33 kDa (eIF3 ) which is part of the eIF3 complex and has an RNA binding domain. TIF34 and p33 interact with eavh other and overexpression of p33 complements the growth defect of a tif34-ts mutant. Our results provide support for both physical and functional interactions between three subunits, TIF34, Prt1 and p33, in the eIF3 complex