189 research outputs found

    Chlamydia trachomatis Biovar L2 Infection in Women in South Africa

    Get PDF

    The architecture of the simian varicella virus transcriptome

    Get PDF
    Primary infection with varicella-zoster virus (VZV) causes varicella and the establishment of lifelong latency in sensory ganglion neurons. In one-third of infected individuals VZV reactivates from latency to cause herpes zoster, often complicated by difficult-to-treat chronic pain. Experimental infection of non-human primates with simian varicella virus (SVV) recapitulates most features of human VZV disease, thereby providing the opportunity to study the pathogenesis of varicella and herpes zoster in vivo. However, compared to VZV, the transcriptome and the full coding potential of SVV remains incompletely understood. Here, we performed nanopore direct RNA sequencing to annotate the SVV transcriptome in lytically SVV-infected African green monkey (AGM) and rhesus macaque (RM) kidney epithelial cells. We refined structures of canonical SVV transcripts and uncovered numerous RNA isoforms, splicing events, fusion transcripts and non-coding RNAs, mostly unique to SVV. We verified the expression of canonical and newly identified SVV transcripts in vivo, using lung samples from acutely SVV-infected cynomolgus macaques. Expression of selected transcript isoforms, including those located in the unique left-end of the SVV genome, was confirmed by reverse transcription PCR. Finally, we performed detailed characterization of the SVV homologue of the VZV latency-associated transcript (VLT), located antisense to ORF61. Analogous to VZV VLT, SVV VLT is multiply spliced and numerous isoforms are generated using alternative transcription start sites and extensive splicing. Conversely, low level expression of a single spliced SVV VLT isoform defines in vivo latency. Notably, the genomic location of VLT core exons is highly conserved between SVV and VZV. This work thus highlights the complexity of lytic SVV gene expression and provides new insights into the molecular biology underlying lytic and latent SVV infection. The identification of the SVV VLT homolog further underlines the value of the SVV non-human primate model to develop new strategies for prevention of herpes zoster

    Cluster of Symptomatic Graft-to-Host Transmission of Herpes Simplex Virus Type 1 in an Endothelial Keratoplasty Setting

    Get PDF
    PURPOSE: Descemet's membrane endothelial keratoplasty (DMEK) is becoming the gold standard to treat corneal endothelial dysfunctions worldwide. Compared with conventional penetrating keratoplasty, infectious complications after DMEK are ill defined. We describe the clinical picture of 2 DMEK recipients, operated on the same day and in the same clinic, who developed atypical herpes simplex virus type 1 (HSV-1) infection in the transplant recipient eye within days post-DMEK. Because recipients received cornea tissue from 2 different donors prepared by the same eye bank, the likelihood of a common HSV-1 source was determined. DESIGN: Case series. PARTICIPANTS: Two DMEK recipients who developed atypical intraocular HSV-1 disease shortly after surgery and surplus cornea specimens of 6 donors. METHODS: Surplus cornea donor (pre-DMEK cornea remnants and conditioned cornea storage and transport media) and recipient samples (post-DMEK aqueous humor) were assayed for HSV-1 DNA and infectious virus by real-time polymerase chain reaction (RT-PCR) and cell culture, respectively. Target-enriched whole viral genome sequencing was performed on HSV-1 DNA–positive ocular specimens. MAIN OUTCOMES MEASURES: Clinical picture of atypical intraocular HSV-1 infection post-DMEK and presence and homology of HSV-1 genomes between ocular specimens of DMEK donors and recipients. RESULTS: Herpes simplex virus type 1 DNA was detected in aqueous humor and donor cornea specimens of both DMEK cases, but not in the cornea remnants of 6 randomly selected donors processed by the same eye bank. Infectious HSV-1 was isolated from the cornea remnant and corresponding culture medium of 1 cornea donor. Notably, whole-genome sequencing of virus DNA-positive specimens demonstrated exceptionally high genetic similarity between HSV-1 strains in recipient and donor specimens of both DMEK cases. CONCLUSIONS: Data indicate cross-contamination of cornea grafts during DMEK preparation with subsequent graft-to-host HSV-1 transmission that caused atypical sight-threatening herpetic eye disease shortly after DMEK. Ophthalmologists should be aware that HSV-1 transmission by DMEK is possible and can lead to atypical ocular disease, a condition that can easily be prevented by taking appropriate technical and clinical measures at both eye bank and surgical levels

    High seroprevalence of human herpesviruses in HIV-infected individuals attending primary healthcare facilities in rural South Africa

    Get PDF
    Seroprevalence data of human herpesviruses (HHVs) are limited for sub-Saharan Africa. These are important to provide an indication of potential burden of HHV-related disease, in particular in human immunodeficiency virus (HIV)-infected individuals who are known to be at increased risk of these conditions in the Western world. In this cross-sectional study among 405 HIV-infected and antiretroviral therapy naïve individuals in rural South Africa the seroprevalence of HHVs was: herpes simplex virus type 1 (HSV-1) (98%), herpes simplex virus type 2 (HSV-2) (87%), varicella zoster virus (VZV) (89%), and 100% for both Epstein-Barr virus (EBV) and cytomegalovirus (CMV). Independent factors associated with VZV seropositivity were low educational status and having children. Lack of in-house access to drinking water was independently associated with positive HSV-1 serostatus, whereas Shangaan ethnicity was associated with HSV-2 seropositivity. Increasing age was associated with higher IgG titres to both EBV and CMV, whereas CD4 cell count was negatively associated with EBV and CMV IgG titres. Moreover, IgG titres of HSV-1 and 2, VZV and CMV, and CMV and EBV were positively correlated. The high HHV seroprevalence emphasises the importance of awareness of these viral infections in HIV-infected individuals in South Africa

    Simian varicella virus infection of Chinese rhesus macaques produces ganglionic infection in the absence of rash

    Get PDF
    Varicella-zoster virus (VZV) causes varicella (chickenpox), becomes latent in ganglia along the entire neuraxis, and may reactivate to cause herpes zoster (shingles). VZV may infect ganglia via retrograde axonal transport from infected skin or through hematogenous spread. Simian varicella virus (SVV) infection of rhesus macaques provides a useful model system to study the pathogenesis of human VZV infection. To dissect the virus and host immune factors during acute SVV infection, we analyzed four SVV-seronegative Chinese rhesus macaques infected intratracheally with cell-associated 5 × 103 plaque-forming units (pfu) of SVV-expressing green fluorescent protein (n = 2) or 5 × 104 pfu of wild-type SVV (n = 2). All monkeys developed viremia and SVV-specific adaptive B- and T-cell immune responses, but none developed skin rash. At necropsy 21 days postinfection, SVV DNA was found in ganglia along the entire neuraxis and in viscera, and SVV RNA was found in ganglia, but not in viscera. The amount of SVV inoculum was associated with the extent of viremia and the immune response to virus. Our findings demonstrate that acute SVV infection of Chinese rhesus macaques leads to ganglionic infection by the hematogenous route and the induction of a virus-specific adaptive memory response in the absence of skin rash
    • …
    corecore