16 research outputs found

    Putting the pieces together: B-cell receptor sequencing of autoreactive B cells in rheumatoid arthritis

    Get PDF
    Anti-citrullinated protein antibodies (ACPA) are highly specific biomarkers for rheumatoid arthritis (RA). ACPA are predominantly of the immunoglobulin (Ig)G isotype and 90% of ACPA-IgG contains N-glycans in the variable domain. With the research in this thesis, we showed that this remarkably high frequency of N-glycans on secreted ACPA-IgG corresponds to a high frequency of N-glycosylation sites in full-length variable region B-cell receptor (BCR) transcripts of ACPA-expressing B cells. We looked at clonotypes and mutational analysis of the BCR sequences and studied the frequency, position and introduction of N-glycosylation sites that distinguish ACPA-expressing B cells in RA from other (antigen-specific) B-cells.LUMC / Geneeskund

    Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation

    Get PDF
    The hallmark autoantibodies in rheumatoid arthritis are characterized by variable domain glycans (VDGs). Their abundant occurrence results from the selective introduction of N-linked glycosylation sites during somatic hypermutation, and their presence is predictive for disease development. However, the functional consequences of VDGs on autoreactive B cells remain elusive. Combining crystallography, glycobiology, and functional B cell assays allowed us to dissect key characteristics of VDGs on human B cell biology. Crystal structures showed that VDGs are positioned in the vicinity of the antigen-binding pocket, and dynamic modeling combined with binding assays elucidated their impact on binding. We found that VDG-expressing B cell receptors stay longer on the B cell surface and that VDGs enhance B cell activation. These results provide a rationale on how the acquisition of VDGs might contribute to the breach of tolerance of autoreactive B cells in a major human autoimmune disease.Medicinal Chemistr

    Persistent GnRH receptor activation in pituitary αT3-1 cells analyzed with a label-free technology.

    No full text
    The gonadotropin-releasing hormone (GnRH) receptor is a drug target for certain hormone-dependent diseases such as prostate cancer. In this study, we examined the activation profiles of the endogenous ligand, GnRH and a well-known marketed analog, buserelin using a label-free assay in pituitary αT3-1 cells with endogenous GnRH receptor expression. This whole cell impedance-based technology allows for the real-time measurement of morphological cellular changes. Both agonists dose-dependently decreased the impedance as a result of GnRH receptor activation with potencies of 9.3±0.1 (pEC50 value, buserelin) and 7.8±0.06 (pEC50 value, GnRH). Subsequently, GnRH receptor activation was completely abolished with a selective Gαq inhibitor, thereby confirming the Gαq-coupling of the GnRH receptor in pituitary αT3-1 cells. Additionally, we observed continued responses after agonist stimulation of αT3-1 cells indicating long-lasting cellular effects. Wash-out experiments demonstrated that the long-lasting effects induced by GnRH were most likely caused by rebinding since over 70% of the original response was abolished after wash-out. In contrast, a long receptor residence time was responsible for the prolonged effects caused by buserelin, with over 70% of the original response remaining after wash-out. In summary, we validated that impedance-based label-free technology is suited for studying receptor-mediated activation in cell lines endogenously expressing the target of interest. Moreover, this real-time monitoring allows the examination of binding kinetics and its influence on receptor activation at a cellular level.</p

    Persistent GnRH receptor activation in pituitary αT3-1 cells analyzed with a label-free technology.

    No full text
    The gonadotropin-releasing hormone (GnRH) receptor is a drug target for certain hormone-dependent diseases such as prostate cancer. In this study, we examined the activation profiles of the endogenous ligand, GnRH and a well-known marketed analog, buserelin using a label-free assay in pituitary αT3-1 cells with endogenous GnRH receptor expression. This whole cell impedance-based technology allows for the real-time measurement of morphological cellular changes. Both agonists dose-dependently decreased the impedance as a result of GnRH receptor activation with potencies of 9.3±0.1 (pEC50 value, buserelin) and 7.8±0.06 (pEC50 value, GnRH). Subsequently, GnRH receptor activation was completely abolished with a selective Gαq inhibitor, thereby confirming the Gαq-coupling of the GnRH receptor in pituitary αT3-1 cells. Additionally, we observed continued responses after agonist stimulation of αT3-1 cells indicating long-lasting cellular effects. Wash-out experiments demonstrated that the long-lasting effects induced by GnRH were most likely caused by rebinding since over 70% of the original response was abolished after wash-out. In contrast, a long receptor residence time was responsible for the prolonged effects caused by buserelin, with over 70% of the original response remaining after wash-out. In summary, we validated that impedance-based label-free technology is suited for studying receptor-mediated activation in cell lines endogenously expressing the target of interest. Moreover, this real-time monitoring allows the examination of binding kinetics and its influence on receptor activation at a cellular level

    Light chain skewing in autoantibodies and B-cell receptors of the citrullinated antigen-binding B-cell response in rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic autoimmune disease affecting 1% of the world population. RA is associated with the presence of autoantibodies, of which anti-citrullinated protein antibodies (ACPA) are most prominent. ACPA are produced by citrullinated antigen-binding B cells that have presumably survived tolerance checkpoints. So far, it is unclear how and when such autoreactive B cells emerge. Light chain (LC) rearrangement and mutation rates can be informative with regard to selection steps during B-cell development. Therefore, we studied LC characteristics of ACPA-expressing B cells and secreted ACPA with the aim to better understand the development of this disease-specific, autoreactive B-cell response. Paired ACPA-IgG and ACPA-depleted IgG were isolated from serum (n = 87) and synovial fluid (SF, n = 21) of patients with established RA. We determined the LC composition for each fraction by ELISA using kappa(Ig kappa)- and lambda(Ig lambda) LC-specific antibodies. Cellular LC expression was determined using flow cytometry. In addition, we used a B-cell receptor (BCR)-specific PCR to obtain LC variable region sequences of citrullinated antigen- and tetanus toxoid (TT)-binding B cells. In serum, we observed an increased frequency of lambda LC in ACPA-IgG (1.64:1) compared to control IgG (2.03:1) and to the kappa/lambda ratio reported for healthy individuals (2:1). A similar trend towards higher frequencies of lambda LCs was observed for ACPA-IgG in SF (1.84:1). Additionally, the percentage of Ig lambda-expressing B cells was higher for citrullinated antigen-binding B cells (51%) compared to TT-specific (43%) and total CD19(+)CD20(+) B cells (36%). Moreover, an increased Ig lambda percentage was observed in BCR-sequences derived from ACPA-expressing (49%) compared to TT-specific B cells (34%). Taken together, we report an enhanced frequency of lambda LCs in the secreted ACPA-IgG repertoire and, on the cellular level, in BCR sequences of ACPA-expressing B cells compared to control. This skewing in the autoreactive B-cell repertoire could reflect a process of active selection.Pathophysiology and treatment of rheumatic disease
    corecore