212 research outputs found

    Virulence of Listeria monocytogenes isolated from the cheese dairy environment, other foods and clinical cases

    Get PDF
    The virulence potential of 51 Listeria monocytogenes isolates, including strains from cheese, cheese production environments and from human cases of listeriosis, was evaluated in this study. The isolates were used to infect HT-29 cell monolayers in an in vitro test of virulence, based on a plaque-forming assay (PFA). Fifteen selected isolates were used for subcutaneous footpad inoculation in mice and subsequent recovery of the bacterium from the spleen 3 days after inoculation. In the PFA, two isolates from milk (serovar 1/2a) were not significantly different (P,0.05) from the low-virulence strain (442) used as reference. Thirty-three isolates were not significantly different (P,0.05) from the virulent strain (EGDe) used as reference. Nine isolates were significantly more virulent (highly virulent) than the EGDe strain and seven isolates were significantly less virulent. The nine highly virulent isolates were either from humans (four), from cheese dairy environments (two isolates of a strain were found persistently in two dairies), from cheese (one), from milk (one) and the reference strain for serovar 1/2b (CECT 936). The two milk isolates with low virulence in the PFA were found to be virulent in mice. In conclusion, all the isolates from food and food-related environments were potentially virulent or highly virulent. These results stress the risk of listeriosis associated with the consumption of cheese contaminated with L. monocytogenes, and once more emphasize the importance of good manufacturing practices (GMPs) together with sanitation standard operating procedures (SSOPs) throughout the food chain

    A genome scan for quantitative trait loci affecting the Salmonella carrier-state in the chicken

    Get PDF
    Selection for increased resistance to Salmonella colonisation and excretion could reduce the risk of foodborne Salmonella infection. In order to identify potential loci affecting resistance, differences in resistance were identified between the N and 61 inbred lines and two QTL research performed. In an F2 cross, the animals were inoculated at one week of age with Salmonella enteritidis and cloacal swabs were carried out 4 and 5 wk post inoculation (thereafter called CSW4F2 and CSW4F2) and caecal contamination (CAECF2) was assessed 1 week later. The animals from the (N × 61) × N backcross were inoculated at six weeks of age with Salmonella typhimurium and cloacal swabs were studied from wk 1 to 4 (thereafter called CSW1BC to CSW4BC). A total of 33 F2 and 46 backcross progeny were selectively genotyped for 103 and 135 microsatellite markers respectively. The analysis used least-squares-based and non-parametric interval mapping. Two genome-wise significant QTL were observed on Chromosome 1 for CSW2BC and on Chromosome 2 for CSW4F2, and four suggestive QTL for CSW5F2 on Chromosome 2, for CSW5F2 and CSW2BC on chromosome 5 and for CAECF2 on chromosome 16. These results suggest new regions of interest and the putative role of SAL1

    A maximum likelihood QTL analysis reveals common genome regions controlling resistance to Salmonella colonization and carrier-state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The serovars Enteritidis and Typhimurium of the Gram-negative bacterium <it>Salmonella enterica</it> are significant causes of human food poisoning. Fowl carrying these bacteria often show no clinical disease, with detection only established post-mortem. Increased resistance to the carrier state in commercial poultry could be a way to improve food safety by reducing the spread of these bacteria in poultry flocks. Previous studies identified QTLs for both resistance to carrier state and resistance to <it>Salmonella</it> colonization in the same White Leghorn inbred lines. Until now, none of the QTLs identified was common to the two types of resistance. All these analyses were performed using the F2 inbred or backcross option of the QTLExpress software based on linear regression. In the present study, QTL analysis was achieved using Maximum Likelihood with QTLMap software, in order to test the effect of the QTL analysis method on QTL detection. We analyzed the same phenotypic and genotypic data as those used in previous studies, which were collected on 378 animals genotyped with 480 genome-wide SNP markers. To enrich these data, we added eleven SNP markers located within QTLs controlling resistance to colonization and we looked for potential candidate genes co-localizing with QTLs.</p> <p>Results</p> <p>In our case the QTL analysis method had an important impact on QTL detection. We were able to identify new genomic regions controlling resistance to carrier-state, in particular by testing the existence of two segregating QTLs. But some of the previously identified QTLs were not confirmed. Interestingly, two QTLs were detected on chromosomes 2 and 3, close to the locations of the major QTLs controlling resistance to colonization and to candidate genes involved in the immune response identified in other, independent studies.</p> <p>Conclusions</p> <p>Due to the lack of stability of the QTLs detected, we suggest that interesting regions for further studies are those that were identified in several independent studies, which is the case of the QTL regions on chromosomes 2 and 3, involved in resistance to both <it>Salmonella</it> colonization and carrier state. These observations provide evidence of common genes controlling <it>S.</it> Typhimurium colonization and <it>S</it>. Enteritidis carrier-state in chickens.</p

    Deciphering why Salmonella Gallinarum is less invasive in vitro than Salmonella Enteritidis

    Get PDF
    International audienceSalmonella Gallinarum and Salmonella Enteritidis are genetically closely related however associated with different pathologies. Several studies have suggested that S. Gallinarum is less invasive in vitro than S. Enteritidis. In this study we confirm that the S. Gallinarum strains tested were much less invasive than the S. Enteritidis strains tested in cells of avian or human origin. In addition, the S. Gallinarum T3SS-1-dependent ability to invade host cells was delayed by two to three hours compared to S. Enteritidis, indicating that T3SS-1-dependent entry is less efficient in S. Gallinarum than S. Enteritidis. This was neither due to a decreased transcription of T3SS-1 related genes when bacteria come into contact with cells, as transcription of hilA, invF and sipA was similar to that observed for S. Enteritidis, nor to a lack of functionality of the S. Gallinarum T3SS-1 apparatus as this apparatus was able to secrete and translocate effector proteins into host cells. In contrast, genome comparison of four S. Gallinarum and two S. Enteritidis strains revealed that all S. Gallinarum genomes displayed the same point mutations in each of the main T3SS-1 effector genes sipA, sopE, sopE2, sopD and sopA

    Heterogeneity of Persistence of Salmonella enterica Serotype Senftenberg Strains Could Explain the Emergence of this Serotype in Poultry Flocks

    Get PDF
    Salmonella enterica serotype Senftenberg (S. Senftenberg) has recently become more frequent in poultry flocks. Moreover some strains have been implicated in severe clinical cases. To explain the causes of this emergence in farm animals, 134 S. Senftenberg isolates from hatcheries, poultry farms and human clinical cases were analyzed. Persistent and non-persistent strains were identified in chicks. The non-persistent strains disappeared from ceca a few weeks post inoculation. This lack of persistence could be related to the disappearance of this serotype from poultry farms in the past. In contrast, persistent S. Senftenberg strains induced an intestinal asymptomatic carrier state in chicks similar to S. Enteritidis, but a weaker systemic infection than S. Enteritidis in chicks and mice. An in vitro analysis showed that the low infectivity of S. Senftenberg is in part related to its low capacity to invade enterocytes and thus to translocate the intestinal barrier. The higher capacity of persistent than non-persistent strains to colonize and persist in the ceca of chickens could explain the increased persistence of S. Senftenberg in poultry flocks. This trait might thus present a human health risk as these bacteria could be present in animals before slaughter and during food processing

    Gene expression in the chicken caecum is dependent on microbiota composition

    Get PDF
    Gut microbiota is of considerable importance for each host. Despite this, germ-free animals can be obtained and raised to sexual maturity and consequences of the presence or absence of gut microbiota on gene expression of the host remain uncharacterised. In this study, we performed an unbiased study of protein expression in the caecum of germ-free and colonised chickens. The major difference between these two groups was in the expression of immunoglobulins which were essentially absent in the germ-free chickens. Microbiota also caused a minor decrease in the expression of focal adhesion and extracellular matrix proteins and an increase in the expression of argininosuccinate synthase ASS1, redox potential sensing, fermentative metabolic processes and detoxification systems represented by sulfotransferases SULT1C3 or SULT1E1. Since we also analysed expression in the caecum of E. coli Nissle and E. faecium DSM7134 mono-associated chickens, we concluded that at least immunoglobulin expression and expression of cystathionine synthase (CBS) was dependent on microbiota composition with E. coli Nissle stimulating more immunoglobulin and PIGR expression and E. faecium DSM7134 stimulating more CBS expression. Gut microbiota and its composition therefore affected protein expression in the chicken caecum though except for immunoglobulin production, the remaining differences were unexpectedly low

    Systemic Administration of Avian Defensin 7: Distribution, Cellular Target, and Antibacterial Potential in Mice

    Get PDF
    Defensins are natural antimicrobial peptides. The avian beta-defensin AvBD7 isolated from the chicken bone marrow possess broad antibacterial spectrum and strong resistance to proteolysis. However, its ability to fight systemic infections of major concern for public health, such as salmonellosis, is unknown. As a first approach, fluorescence labeling of AvBD7 allowed to track its systemic distribution after intraperitoneal injection in mice using whole body live imaging. It was associated to peritoneal cells and to deeper organs such as the liver. In the next step, the use of labeled AvBD7 allowed to observe its interaction with murine macrophages in culture. After incubation, it was able to penetrate inside the cells through an endocytosis-like mechanism. Furthermore, natural AvBD7 contributed to the control of intracellular multiplication of a multidrug resistant Salmonella strain, after incubation with infected macrophages. Finally, administration in a model of systemic lethal Salmonella infection in mice led to significant improvement of mouse survival, consistently with significant reduction of the liver bacterial load. In conclusion, the results reveal a hitherto unknown intracellular antibacterial effect of AvBD7 in Salmonella target cells and support AvBD7 as a candidate of interest for the treatment of infectious diseases caused by multidrug-resistant pathogenic Enterobacteriaceae
    • 

    corecore