350 research outputs found
Disappearance of back-to-back high hadron correlations in central Au+Au collisions at = 200 GeV
Azimuthal correlations for large transverse momentum charged hadrons have
been measured over a wide pseudo-rapidity range and full azimuth in Au+Au and
p+p collisions at = 200 GeV. The small-angle correlations
observed in p+p collisions and at all centralities of Au+Au collisions are
characteristic of hard-scattering processes already observed in elementary
collisions. A strong back-to-back correlation exists for p+p and peripheral Au
+ Au. In contrast, the back-to-back correlations are reduced considerably in
the most central Au+Au collisions, indicating substantial interaction as the
hard-scattered partons or their fragmentation products traverse the medium.Comment: submitted to Phys. Rev. Let
Azimuthal anisotropy and correlations in the hard scattering regime at RHIC
Azimuthal anisotropy () and two-particle angular correlations of high
charged hadrons have been measured in Au+Au collisions at
=130 GeV for transverse momenta up to 6 GeV/c, where hard
processes are expected to contribute significantly. The two-particle angular
correlations exhibit elliptic flow and a structure suggestive of fragmentation
of high partons. The monotonic rise of for GeV/c is
consistent with collective hydrodynamical flow calculations. At \pT>3 GeV/c a
saturation of is observed which persists up to GeV/c.Comment: As publishe
Azimuthal anisotropy of K0S and Lambda + Lambda -bar production at midrapidity from Au+Au collisions at sqrt[sNN]=130 GeV
We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, Lambda , and Lambda -bar at midrapidity in Au+Au collisions at sqrt[sNN]=130 GeV at the Relativistic Heavy Ion Collider. The value of v2 as a function of transverse momentum, pt, of the produced particle and collision centrality is presented for both particles up to pt~3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.Alle Autoren: C. Adler, Z. Ahammed, C. Allgower, J. Amonett, B. D. Anderson, M. Anderson, G. S. Averichev, J. Balewski, O. Barannikova, L. S. Barnby, J. Baudot, S. Bekele, V. V. Belaga, R. Bellwied, J. Berger, H. Bichsel, A. Billmeier, L. C. Bland, C. O. Blyth, B. E. Bonner, A. Boucham, A. Brandin, A. Bravar, R. V. Cadman, H. Caines, M. Calderón de la Barca Sánchez, A. Cardenas, J. Carroll, J. Castillo, M. Castro, D. Cebra, P. Chaloupka, S. Chattopadhyay, Y. Chen, S. P. Chernenko, M. Cherney, A. Chikanian, B. Choi, W. Christie, J. P. Coffin, T. M. Cormier, J. G. Cramer, H. J. Crawford, W. S. Deng, A. A. Derevschikov, L. Didenko, T. Dietel, J. E. Draper, V. B. Dunin, J. C. Dunlop, V. Eckardt, L. G. Efimov, V. Emelianov, J. Engelage, G. Eppley, B. Erazmus, P. Fachini, V. Faine, K. Filimonov, E. Finch, Y. Fisyak, D. Flierl, K. J. Foley, J. Fu, C. A. Gagliardi, N. Gagunashvili, J. Gans, L. Gaudichet, M. Germain, F. Geurts, V. Ghazikhanian, O. Grachov, V. Grigoriev, M. Guedon, E. Gushin, T. J. Hallman, D. Hardtke, J. W. Harris, T. W. Henry, S. Heppelmann, T. Herston, B. Hippolyte, A. Hirsch, E. Hjort, G. W. Hoffmann, M. Horsley, H. Z. Huang, T. J. Humanic, G. Igo, A. Ishihara, Yu. I. Ivanshin, P. Jacobs, W. W. Jacobs, M. Janik, I. Johnson, P. G. Jones, E. G. Judd, M. Kaneta, M. Kaplan, D. Keane, J. Kiryluk, A. Kisiel, J. Klay, S. R. Klein, A. Klyachko, A. S. Konstantinov, M. Kopytine, L. Kotchenda, A. D. Kovalenko, M. Kramer, P. Kravtsov, K. Krueger, C. Kuhn, A. I. Kulikov, G. J. Kunde, C. L. Kunz, R. Kh. Kutuev, A. A. Kuznetsov, L. Lakehal-Ayat, M. A. C. Lamont, J. M. Landgraf, S. Lange, C. P. Lansdell, B. Lasiuk, F. Laue, A. Lebedev, R. Lednický, V. M. Leontiev, M. J. LeVine, Q. Li, S. J. Lindenbaum, M. A. Lisa, F. Liu, L. Liu, Z. Liu, Q. J. Liu, T. Ljubicic, W. J. Llope, G. LoCurto, H. Long, R. S. Longacre, M. Lopez-Noriega, W. A. Love, T. Ludlam, D. Lynn, J. Ma, R. Majka, S. Margetis, C. Markert, L. Martin, J. Marx, H. S. Matis, Yu. A. Matulenko, T. S. McShane, F. Meissner, Yu. Melnick, A. Meschanin, M. Messer, M. L. Miller, Z. Milosevich, N. G. Minaev, J. Mitchell, V. A. Moiseenko, C. F. Moore, V. Morozov, M. M. de Moura, M. G. Munhoz, J. M. Nelson, P. Nevski, V. A. Nikitin, L. V. Nogach, B. Norman, S. B. Nurushev, G. Odyniec, A. Ogawa, V. Okorokov, M. Oldenburg, D. Olson, G. Paic, S. U. Pandey, Y. Panebratsev, S. Y. Panitkin, A. I. Pavlinov, T. Pawlak, V. Perevoztchikov, W. Peryt, V. A Petrov, M. Planinic, J. Pluta, N. Porile, J. Porter, A. M. Poskanzer, E. Potrebenikova, D. Prindle, C. Pruneau, J. Putschke, G. Rai, G. Rakness, O. Ravel, R. L. Ray, S. V. Razin, D. Reichhold, J. G. Reid, F. Retiere, A. Ridiger, H. G. Ritter, J. B. Roberts, O. V. Rogachevski, J. L. Romero, A. Rose, C. Roy, V. Rykov, I. Sakrejda, S. Salur, J. Sandweiss, A. C. Saulys, I. Savin, J. Schambach, R. P. Scharenberg, N. Schmitz, L. S. Schroeder, A. Schüttauf, K. Schweda, J. Seger, D. Seliverstov, P. Seyboth, E. Shahaliev, K. E. Shestermanov, S. S. Shimanskii, V. S. Shvetcov, G. Skoro, N. Smirnov, R. Snellings, P. Sorensen, J. Sowinski, H. M. Spinka, B. Srivastava, E. J. Stephenson, R. Stock, A. Stolpovsky, M. Strikhanov, B. Stringfellow, C. Struck, A. A. P. Suaide, E. Sugarbaker, C. Suire, M. Šumbera, B. Surrow, T. J. M. Symons, A. Szanto de Toledo, P. Szarwas, A. Tai, J. Takahashi, A. H. Tang, J. H. Thomas, M. Thompson, V. Tikhomirov, M. Tokarev, M. B. Tonjes, T. A. Trainor, S. Trentalange, R. E. Tribble, V. Trofimov, O. Tsai, T. Ullrich, D. G. Underwood, G. Van Buren, A. M. VanderMolen, I. M. Vasilevski, A. N. Vasiliev, S. E. Vigdor, S. A. Voloshin, F. Wang, H. Ward, J. W. Watson, R. Wells, G. D. Westfall, C. Whitten, Jr., H. Wieman, R. Willson, S. W. Wissink, R. Witt, J. Wood, N. Xu, Z. Xu, A. E. Yakutin, E. Yamamoto, J. Yang, P. Yepes, V. I. Yurevich, Y. V. Zanevski, I. Zborovský, H. Zhang, W. M. Zhang, R. Zoulkarneev, and A. N. Zubarev (STAR Collaboration
Azimuthal anisotropy of K0s and Lambda prduction at mid-rapidity from Au+Au collisions at root s = 130 GeV
We report STAR results on the azimuthal anisotropy parameter v2 for strange
particles K0S, L and Lbar at midrapidity in Au+Au collisions at sNN = 130 GeV
at RHIC. The value of v2 as a function of transverse momentum of the produced
particles pt and collision centrality is presented for both particles up to pt
3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2
measurement is compared with hydrodynamic model calculations. The physics
implications of the pt integrated v2 magnitude as a function of particle mass
are also discussed.Comment: 6 pages, 4 figures, by the STAR collaboratio
Longitudinal double-spin asymmetry for inclusive jet production in p+p collisions at sqrt(s)=200 GeV
We report a new STAR measurement of the longitudinal double-spin asymmetry
A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions
at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet
transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than
previous measurements. They provide significant new constraints on the gluon
spin contribution to the nucleon spin through the comparison to predictions
derived from one global fit of polarized deep-inelastic scattering
measurements.Comment: 7 pages, 4 figures + 1 tabl
Elliptic flow from two- and four-particle correlations in Au + Au collisions at sqrt{s_{NN}} = 130 GeV
Elliptic flow holds much promise for studying the early-time thermalization
attained in ultrarelativistic nuclear collisions. Flow measurements also
provide a means of distinguishing between hydrodynamic models and calculations
which approach the low density (dilute gas) limit. Among the effects that can
complicate the interpretation of elliptic flow measurements are azimuthal
correlations that are unrelated to the reaction plane (non-flow correlations).
Using data for Au + Au collisions at sqrt{s_{NN}} = 130 GeV from the STAR TPC,
it is found that four-particle correlation analyses can reliably separate flow
and non-flow correlation signals. The latter account for on average about 15%
of the observed second-harmonic azimuthal correlation, with the largest
relative contribution for the most peripheral and the most central collisions.
The results are also corrected for the effect of flow variations within
centrality bins. This effect is negligible for all but the most central bin,
where the correction to the elliptic flow is about a factor of two. A simple
new method for two-particle flow analysis based on scalar products is
described. An analysis based on the distribution of the magnitude of the flow
vector is also described.Comment: minor text change
Strangelet search at RHIC
Two position sensitive Shower Maximum Detector (SMDs) for Zero-Degree
Calorimeters (ZDCs) were installed by STAR before run 2004 at both upstream and
downstream from the interaction point along the beam axis where particles with
small rigidity are swept away by strong magnetic field. The ZDC-SMDs provides
information about neutral energy deposition as a function of transverse
position in ZDCs. We report the preliminary results of strangelet search from a
triggered data-set sampling 100 million Au+Au collisions at top RHIC energy.Comment: Strange Quark Matter 2004 conference proceedin
Multiplicity distribution and spectra of negatively charged hadrons in Au+Au collisions at sqrt(s_nn) = 130 GeV
The minimum bias multiplicity distribution and the transverse momentum and
pseudorapidity distributions for central collisions have been measured for
negative hadrons (h-) in Au+Au interactions at sqrt(s_nn) = 130 GeV. The
multiplicity density at midrapidity for the 5% most central interactions is
dNh-/deta|_{eta = 0} = 280 +- 1(stat)+- 20(syst), an increase per participant
of 38% relative to ppbar collisions at the same energy. The mean transverse
momentum is 0.508 +- 0.012 GeV/c and is larger than in central Pb+Pb collisions
at lower energies. The scaling of the h- yield per participant is a strong
function of pt. The pseudorapidity distribution is almost constant within
|eta|<1.Comment: 6 pages, 3 figure
Multiplicity and Pseudorapidity Distributions of Charged Particles and Photons at Forward Pseudorapidity in Au + Au Collisions at sqrt{s_NN} = 62.4 GeV
We present the centrality dependent measurement of multiplicity and
pseudorapidity distributions of charged particles and photons in Au + Au
collisions at sqrt{s_NN} = 62.4 GeV. The charged particles and photons are
measured in the pseudorapidity region 2.9 < eta < 3.9 and 2.3 < eta < 3.7,
respectively. We have studied the scaling of particle production with the
number of participating nucleons and the number of binary collisions. The
photon and charged particle production in the measured pseudorapidity range has
been shown to be consistent with energy independent limiting fragmentation
behavior. The photons are observed to follow a centrality independent limiting
fragmentation behavior while for the charged particles it is centrality
dependent. We have carried out a comparative study of the pseudorapidity
distributions of positively charged hadrons, negatively charged hadrons,
photons, pions, net protons in nucleus--nucleus collisions and pseudorapidity
distributions from p+p collisions. From these comparisons we conclude that
baryons in the inclusive charged particle distribution are responsible for the
observed centrality dependence of limiting fragmentation. The mesons are found
to follow an energy independent behavior of limiting fragmentation while the
behavior of baryons seems to be energy dependent.Comment: 17 pages and 20 figure
System-Size Independence of Directed Flow Measured at the BNL Relativistic Heavy-Ion Collider
We measure directed flow (ν_1) for charged particles in Au+Au and Cu+Cu collisions at √S_(NN)=200 and 62.4 GeV, as a function of pseudorapidity (η), transverse momentum (p_t), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to ν_1 in different collision systems, and investigate possible explanations for the observed sign change in ν_1(p_t)
- …